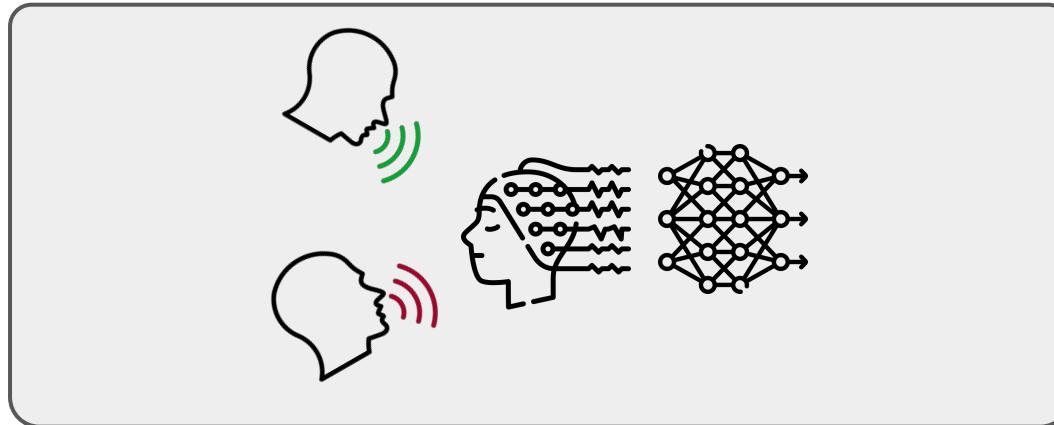


Exploring Foundation Models for Auditory Attention Decoding

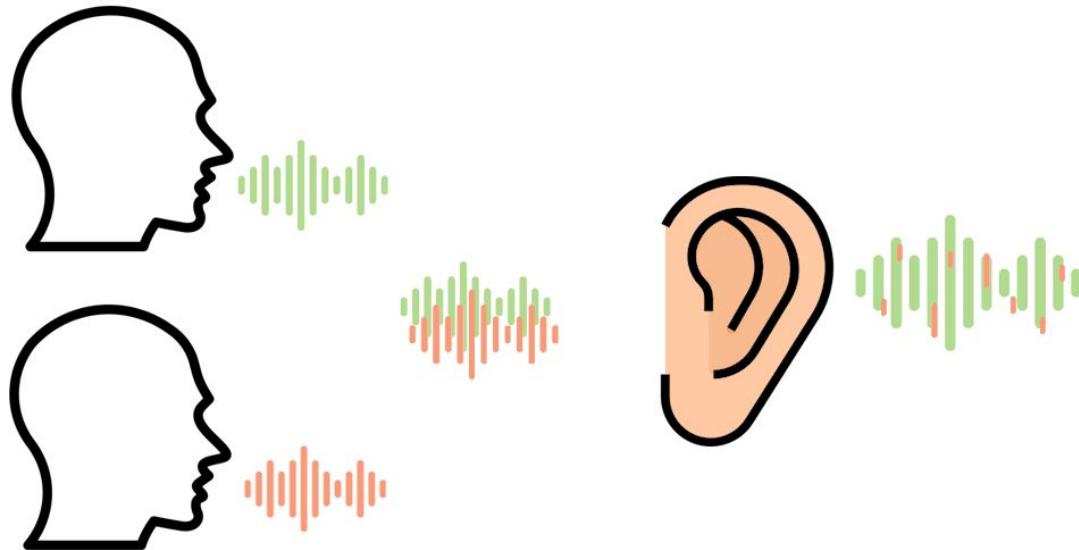


Rasmus Steen Mikkelsen (s204135)
Victor Tolsager Olesen (s204141)

Introduction

Introduction

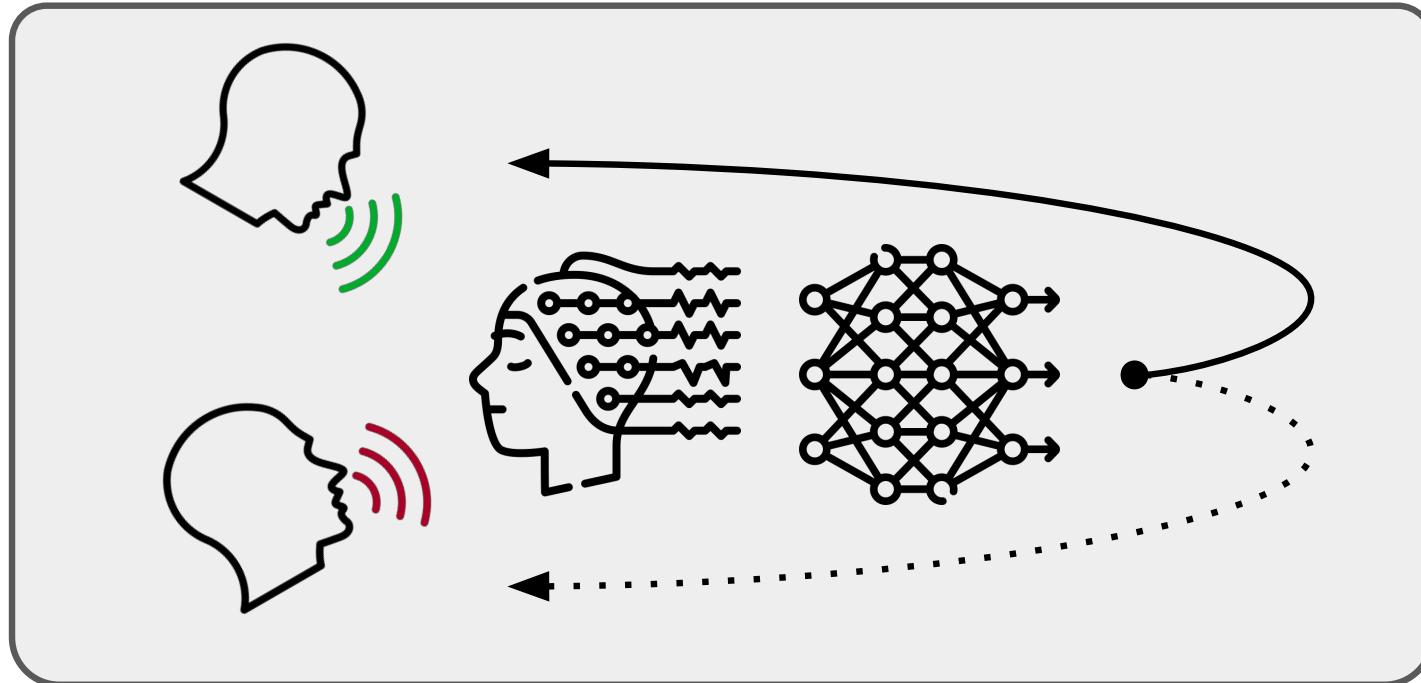
- Cocktail party effect
- Hearing aid users



Introduction

Auditory Attention Decoding

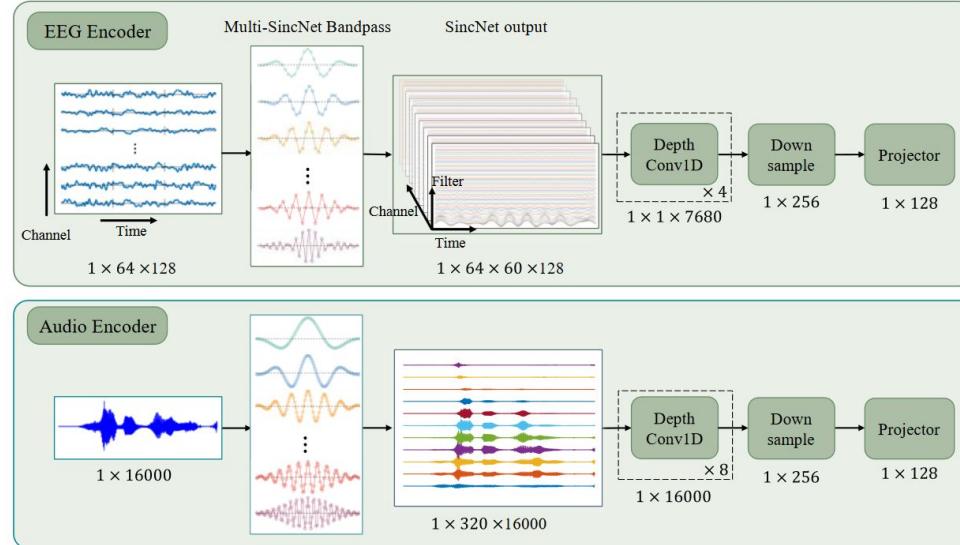
- AAD: Audio+EEG \rightarrow Attention
- Decision window: Time segment used to predict



Introduction

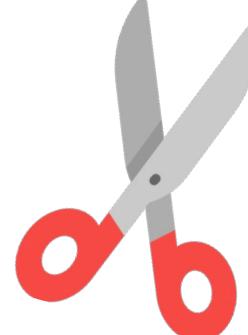
Foundation models

- Foundation Models
- SOTA AAD Models



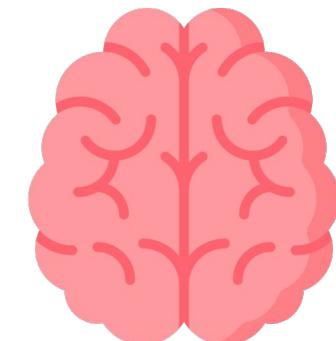
NLP
BERT

Vision+Text
CLIP



Audio+Text
CLAP

EEG
LaBraM



Introduction

Research questions

RQ1: How do CLAP and LaBraM perform as pretrained feature extractors for auditory attention decoding?

RQ2: How does contrastive learning compare to supervised classification for training robust AAD models using CLAP and LaBraM?

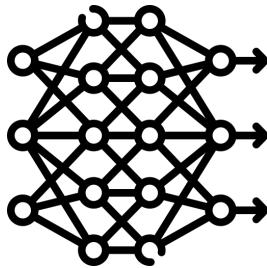
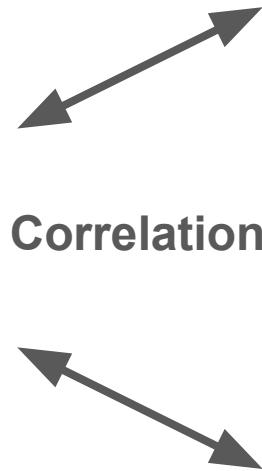
RQ3: How does the length of decision windows affect performance?

Literature Review

Literature Review

Signal Reconstruction

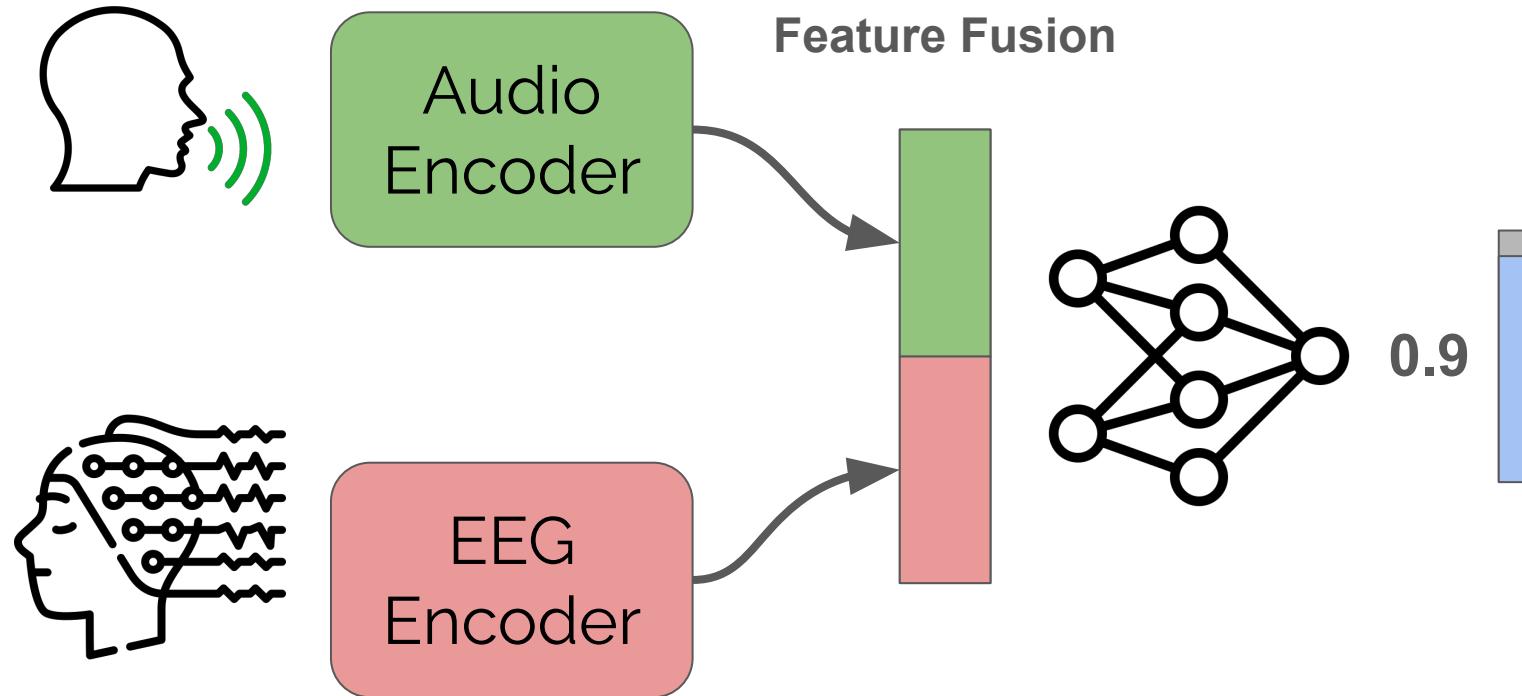
Backwards Approach



Correlation

Literature Review

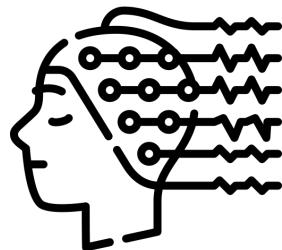
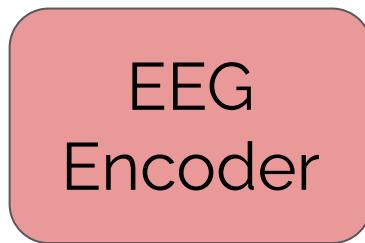
Direct Classification



Literature Review

ASAD

Auditory Spatial Attention Decoding



Literature Review

Why Direct Classification?

[..] the process of stimulus reconstruction [...] is not optimized to effectively detect attention. [...] the compression of multichannel EEG signals into a single waveform through stimulus reconstruction reduces the available information for analysis¹

[...] correlation between the reconstructed and the attended speech envelopes is generally weak²

[1]: Siqi Cai et al. "EEG-based Auditory Attention Detection in Cocktail Party Environment."

[2]: Enze Su et al. "STAnet: A Spatiotemporal Attention Network for Decoding Auditory Spatial Attention From EEG."

Literature Review

Audio Foundation Models

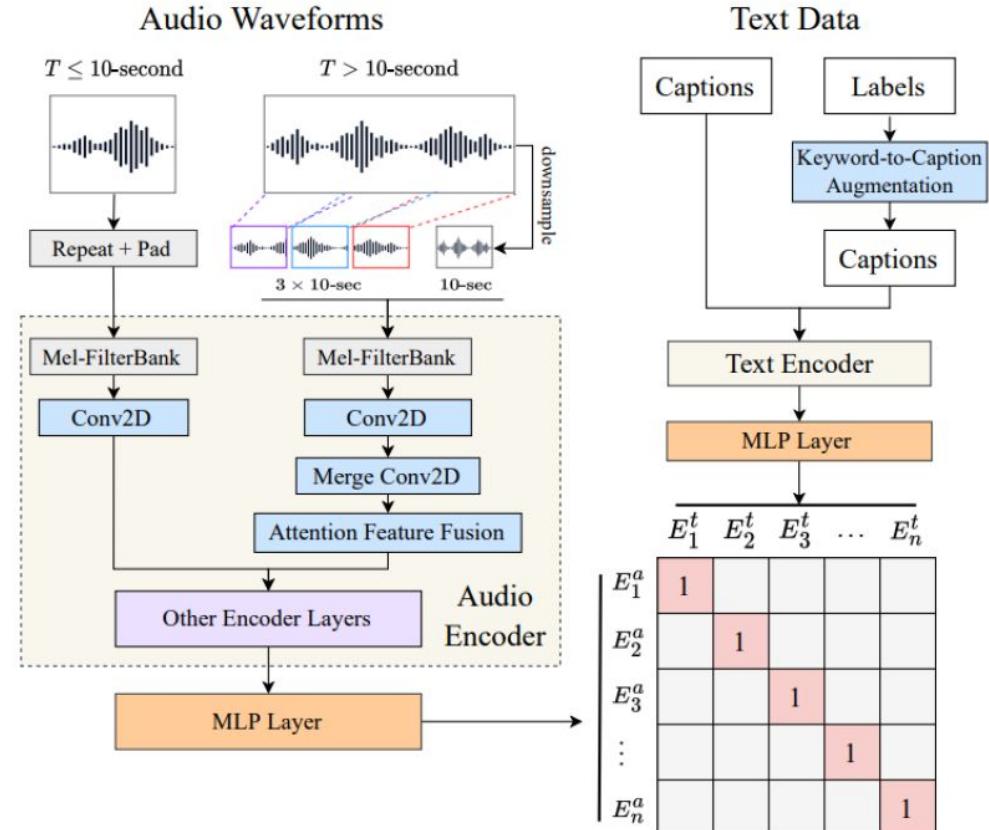


Literature Review

LAION-CLAP

- Contrastive Language Audio Pretraining (CLAP)
- Trained on multiple datasets

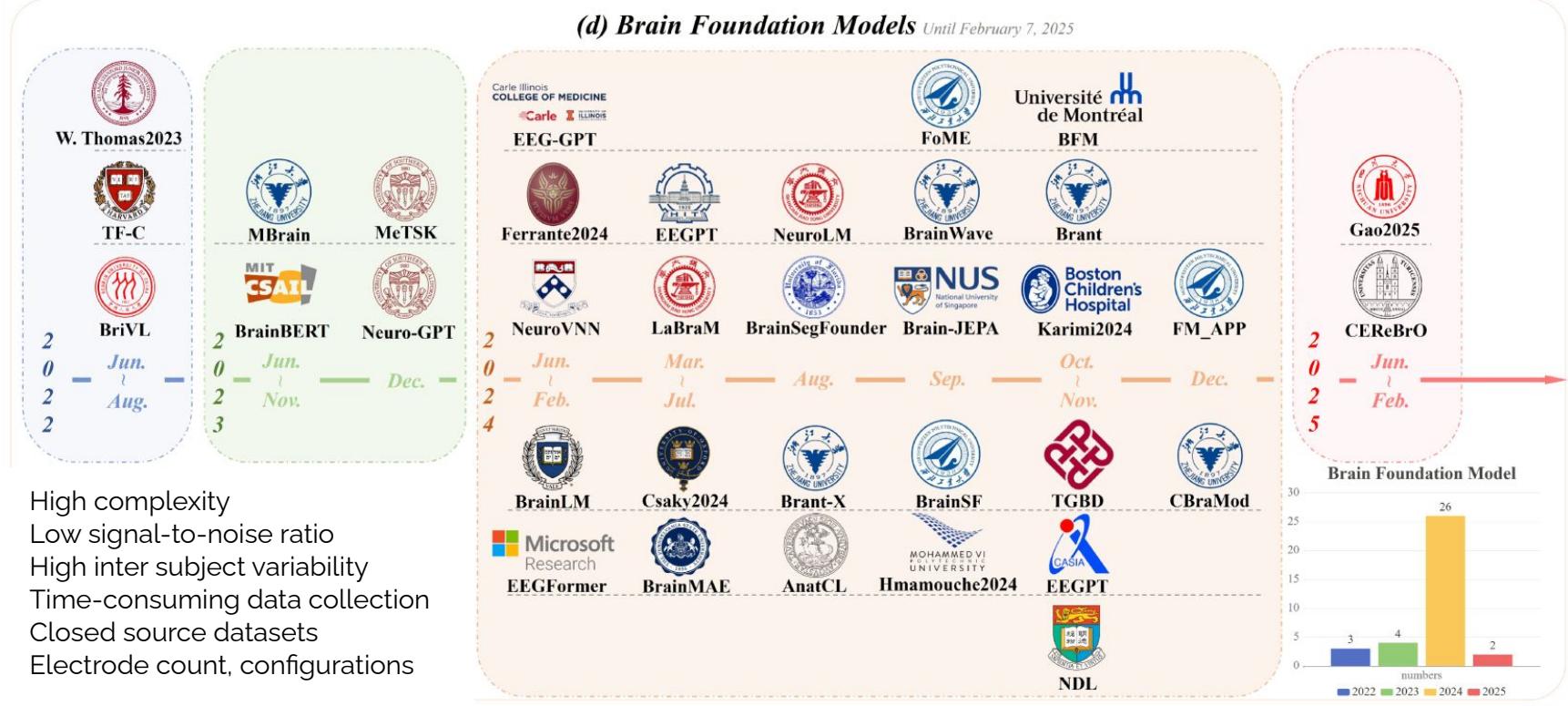
A group of people standing on the street near a busy freeway.



Literature Review

Brain Foundation Models

(d) **Brain Foundation Models** Until February 7, 2025



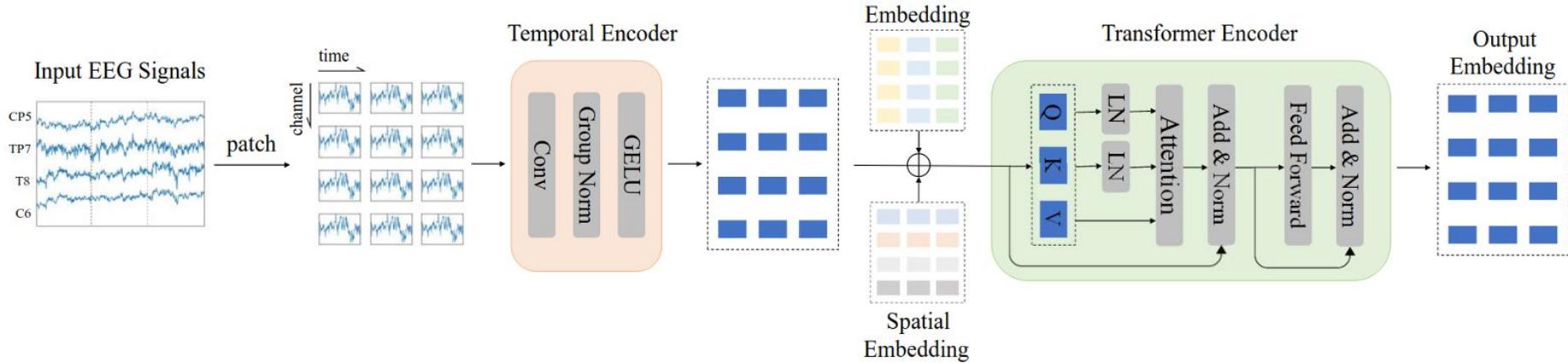
- High complexity
- Low signal-to-noise ratio
- High inter subject variability
- Time-consuming data collection
- Closed source datasets
- Electrode count, configurations

Literature Review

LaBraM

- Large Brain Model (LaBraM)

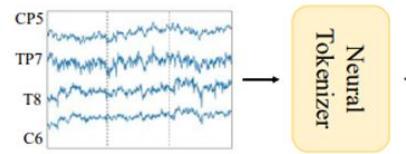
Neural Transformer



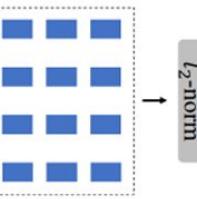
Literature Review

LaBraM Pretraining

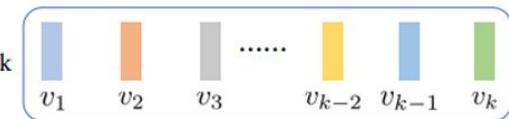
Neural Tokenizer Training



Neural
Tokenizer



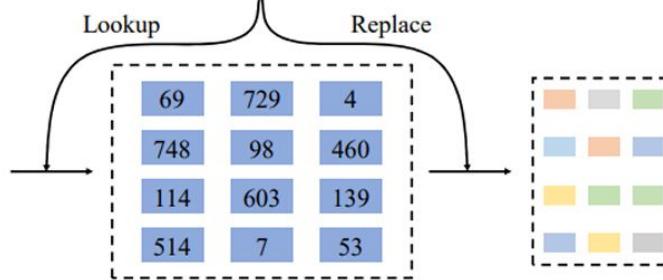
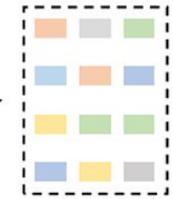
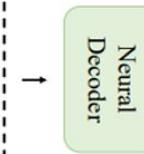
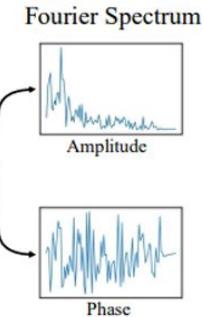
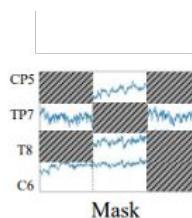
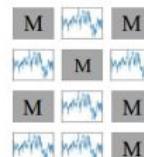
l_2 -norm



l_2 -norm

Lookup

Replace



Temporal Encoder

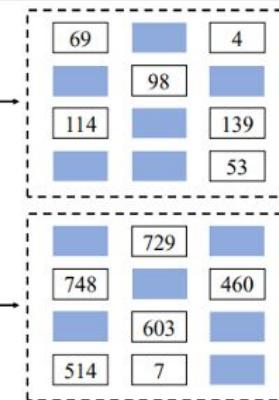
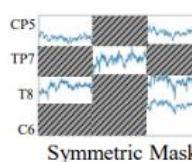
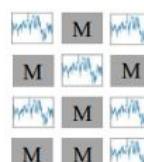
Temporal & Spatial Embedding

Transformer Block 1

Transformer Block 2

Transformer Block L

Token Prediction Head



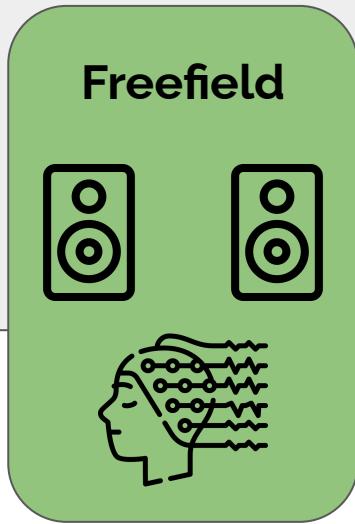
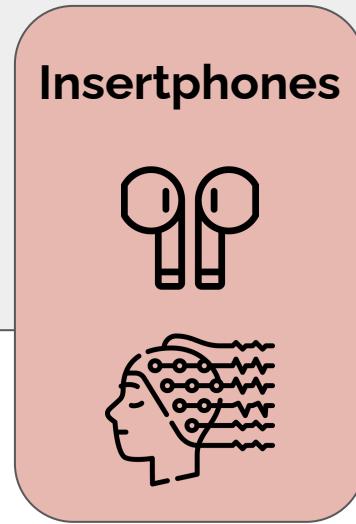
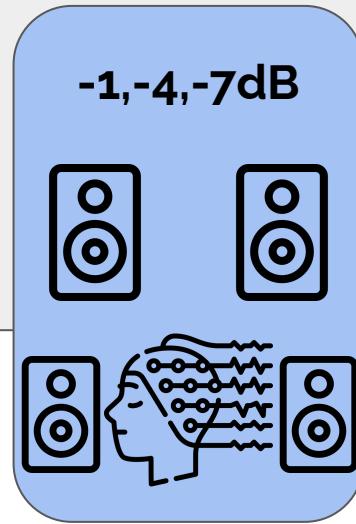
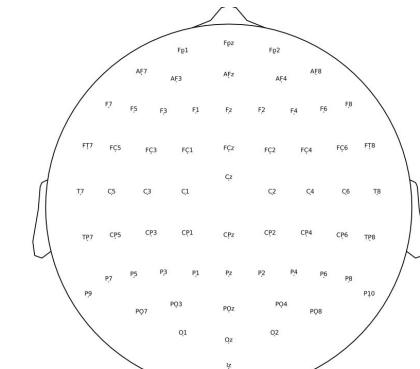
LaBraM Pre-training

Data

Data

Overview

- 26 subjects
- Five conditions
- Male audio clips: 200, Female audio clips: 165
- Trial length: 1 minute



Data

Missing data

- 3 subjects missing, left with 23 subjects
- 3364 trials

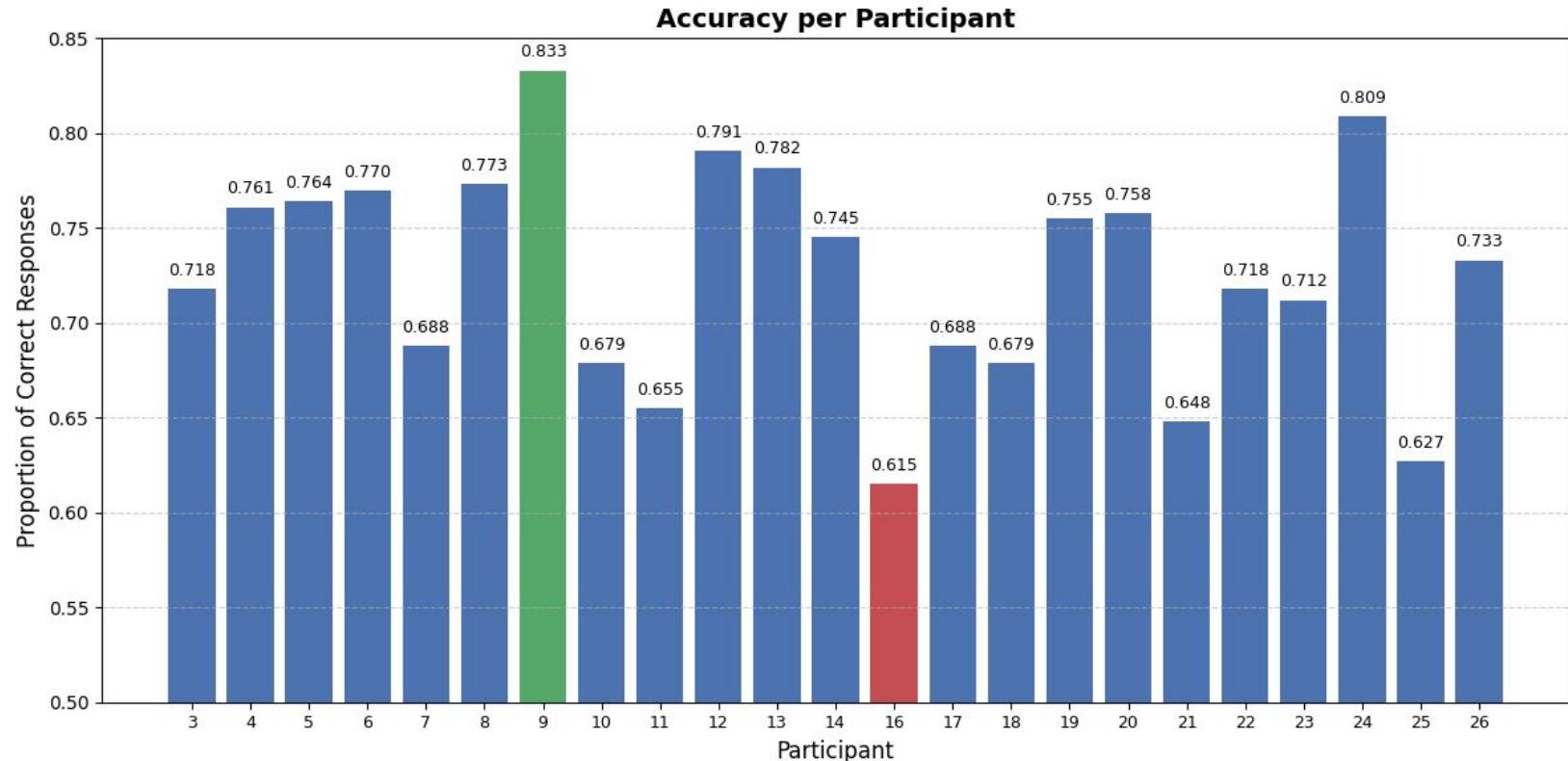
Subject	1	2	4	5	8	14	15	16	23	25
Insert	✗	✗	✓	✓	✗	✓	✗	✗	✓	✓
Free	✗	✗	✓	✗	✓	✓	✗	✗	✓	✗
-1dB	✗	✗	✓	✓	✓	✗	✗	✗	✗	✓
-4dB	✗	✗	✗	✓	✓	✓	✗	✓	✓	✓
-7dB	✗	✗	✓	✓	✓	✓	✗	✓	✗	✓

Subject	Condition	# Missing	Trials
10	Insert	16	
20	-7dB	11	
26	Insert	16	
26	-4dB	15	

Data

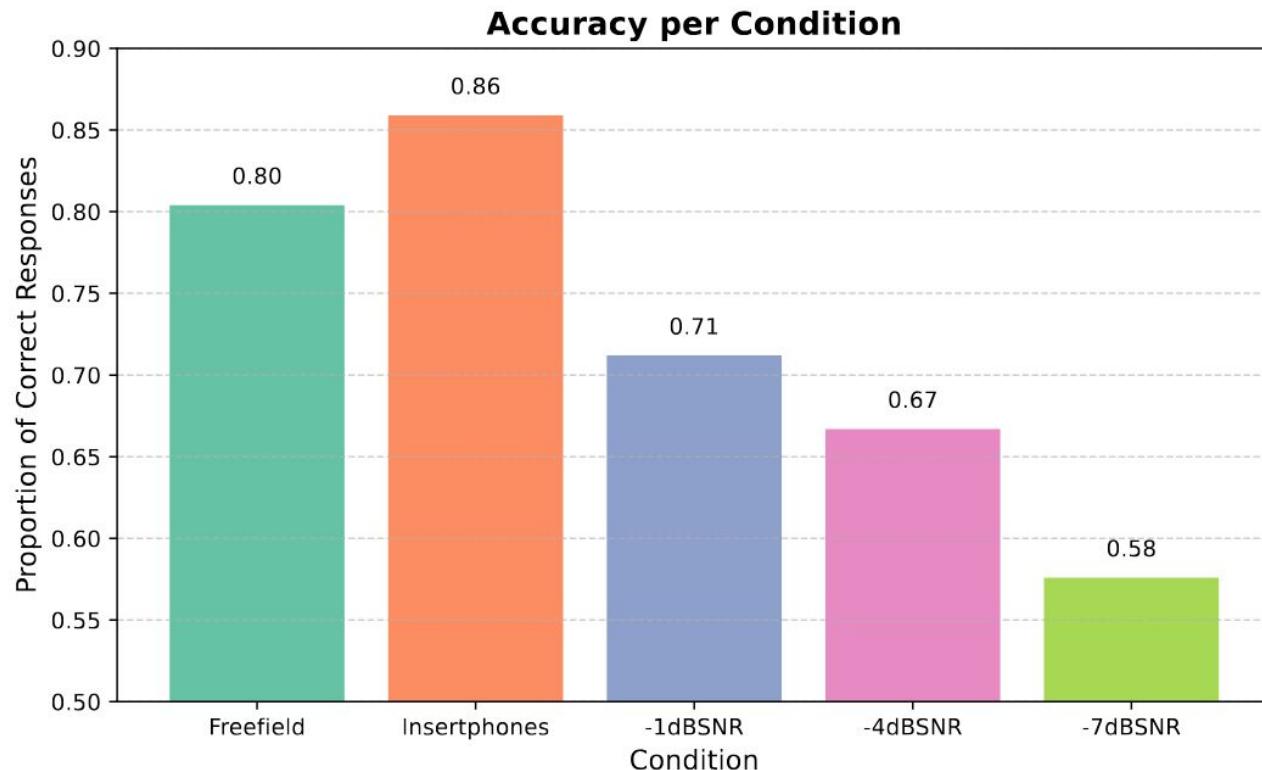
Response accuracy

2 yes/no questions per trial



Data

Response accuracy



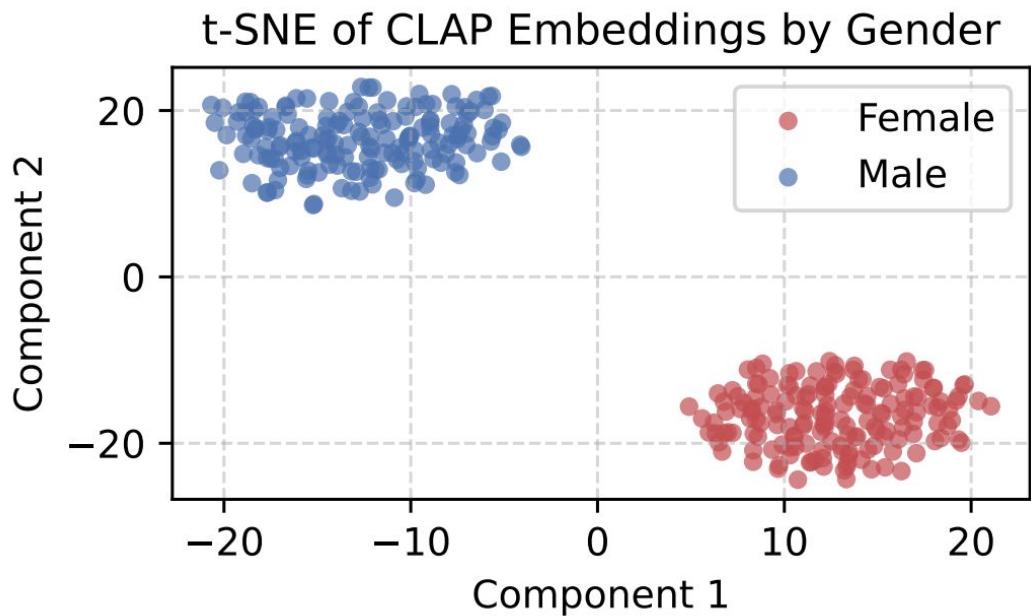
Data

Preprocessing

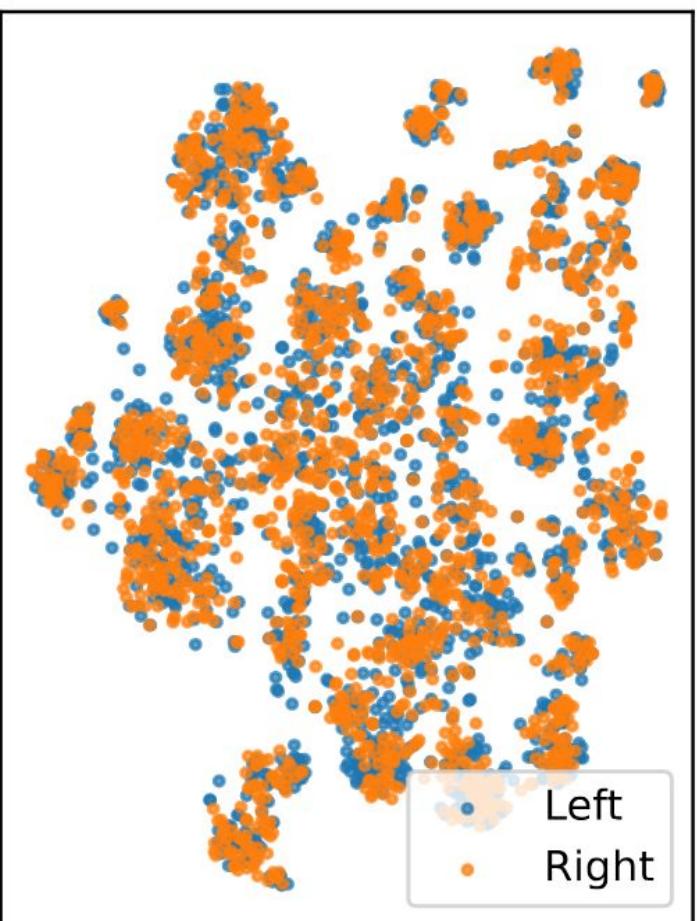
1. EEG was bandpass filtered between 0.5-30Hz
2. Independent Component Analysis (ICA) to remove EEG artifacts
3. EEG downsampled from 8192Hz → 200Hz
4. Audio upsampled from 44100Hz → 48000Hz

Data

Data visualization



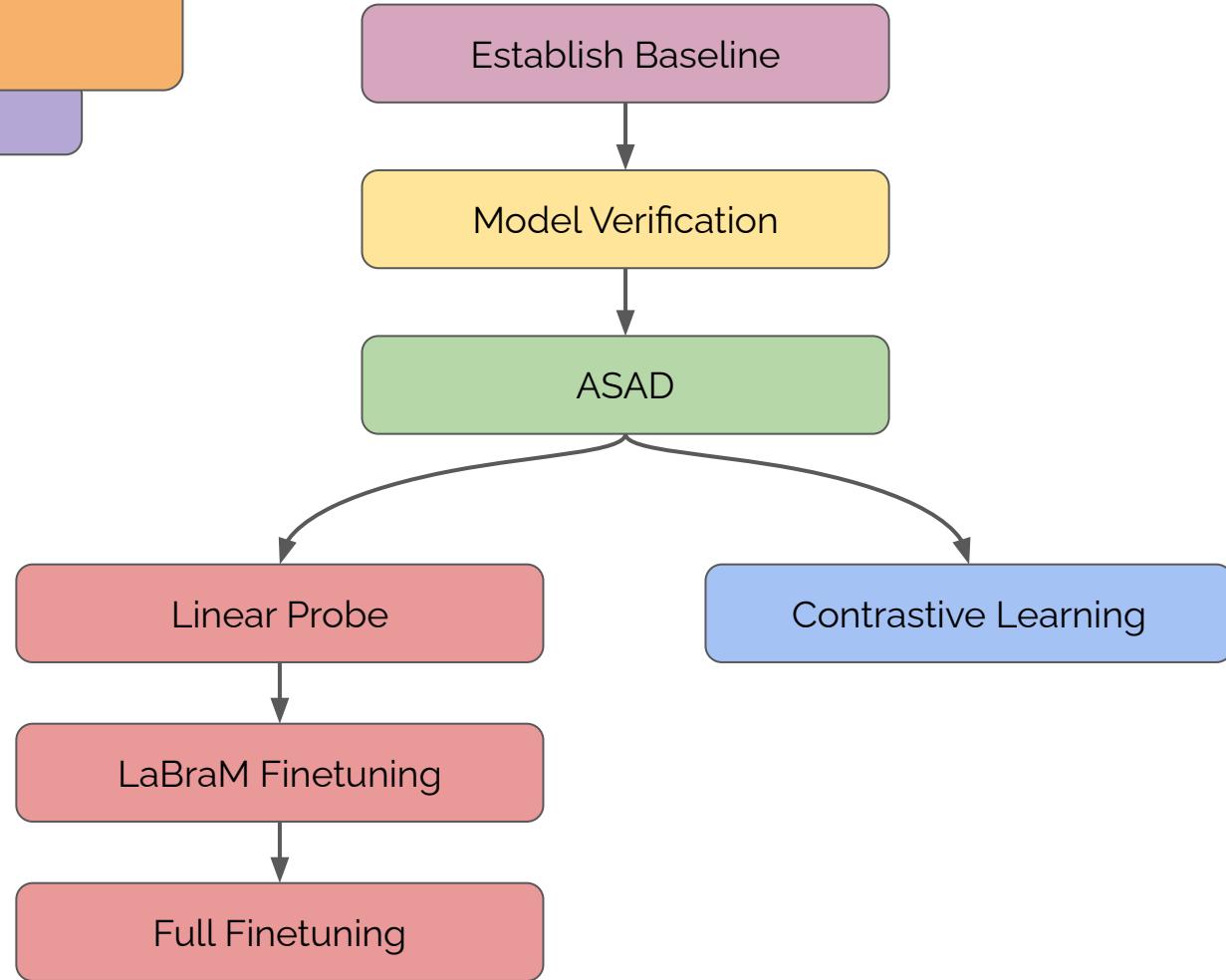
Direction as label



Methodology

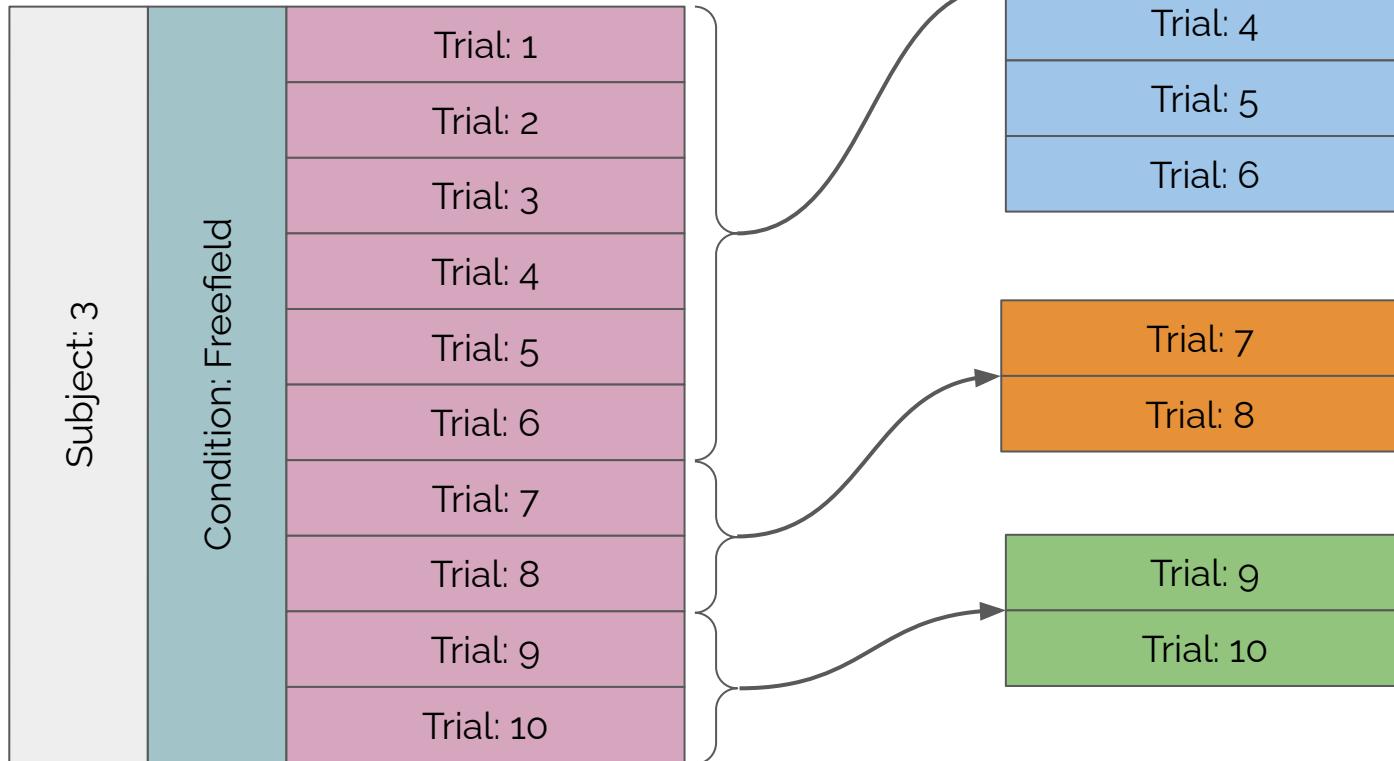
Methodology

Process



Methodology

Data Split - Temporal



Train
60%

Validation
20%

Test
20%

Methodology

Data Split - Audio Disjoint

Male Audio 1
Female Audio 1
Male Audio 2
Female Audio 2
Male Audio 3
Female Audio 3
Male Audio 4
Female Audio 4
Male Audio 5
Female Audio 5

Male Audio 1
Female Audio 1
Male Audio 2
Female Audio 2
Male Audio 3
Female Audio 3

Male Audio 4
Female Audio 4

Male Audio 5
Female Audio 5

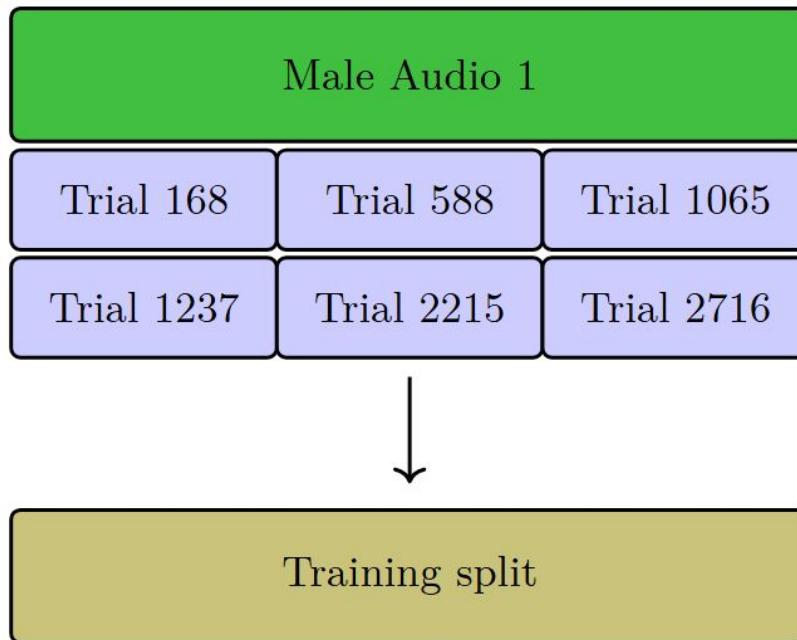
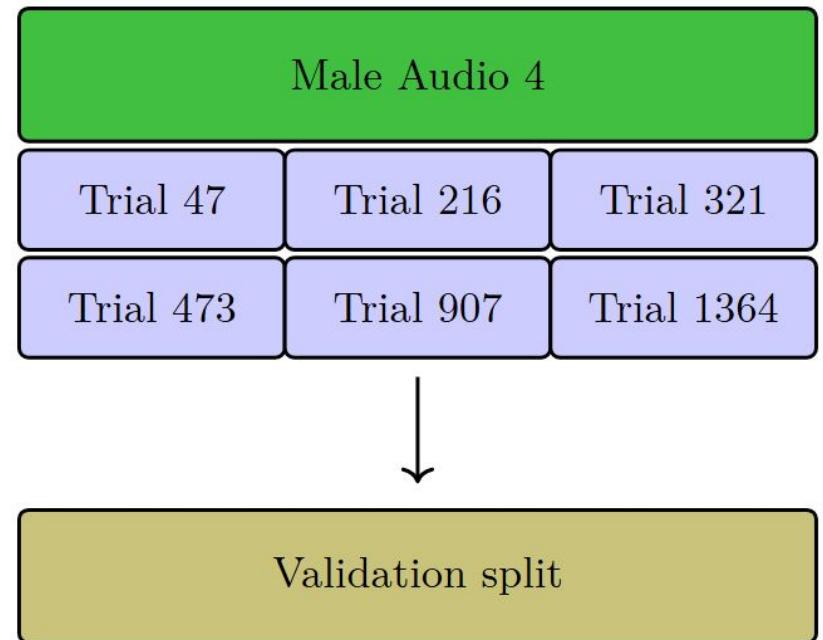
Train
60%

Validation
20%

Test
20%

Methodology

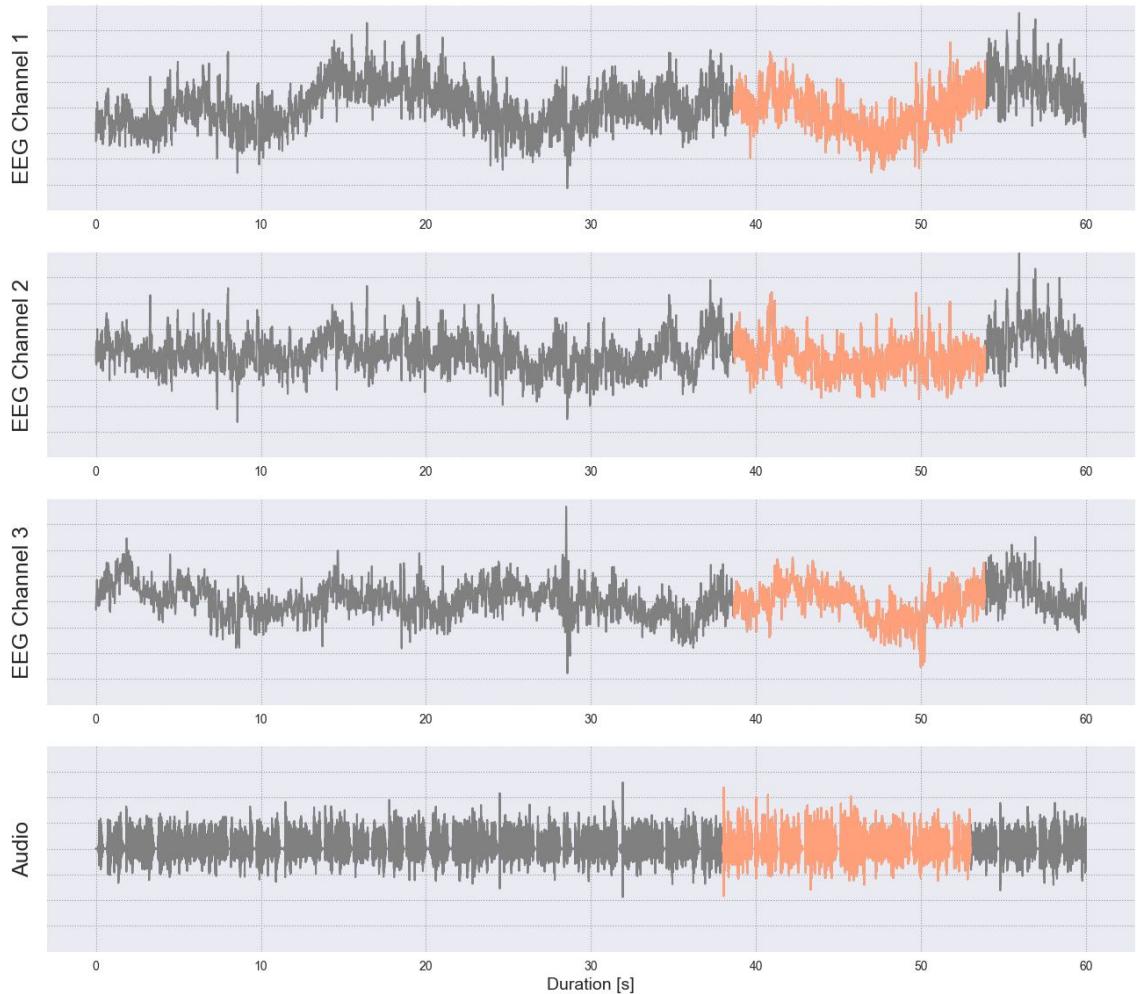
Data Split - Audio Disjoint



Methodology

Trial sampling

- Randomized trial segments
- Fixed validation segments
- Three augmentations:
 - Channel dropout
 - FT Surrogate
 - Time Reverse



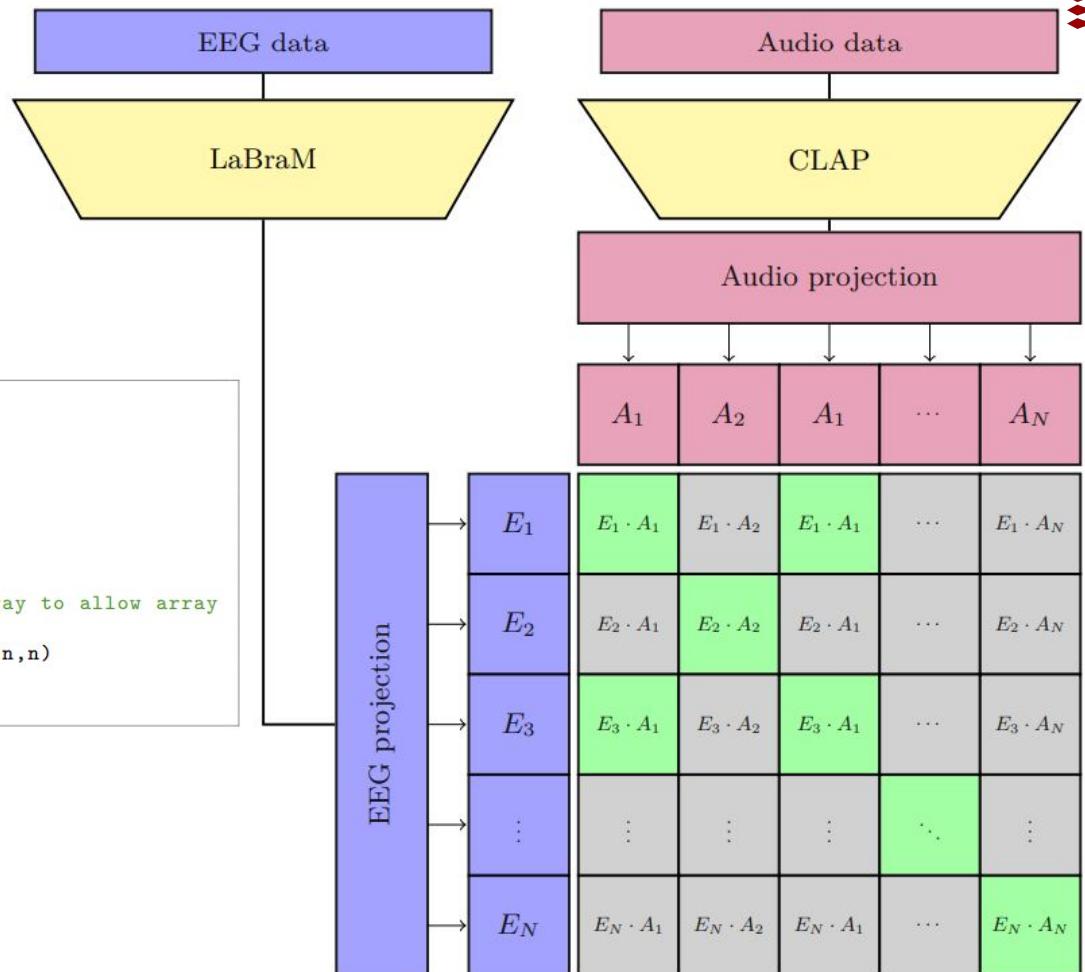
Methodology

Contrastive learning

```

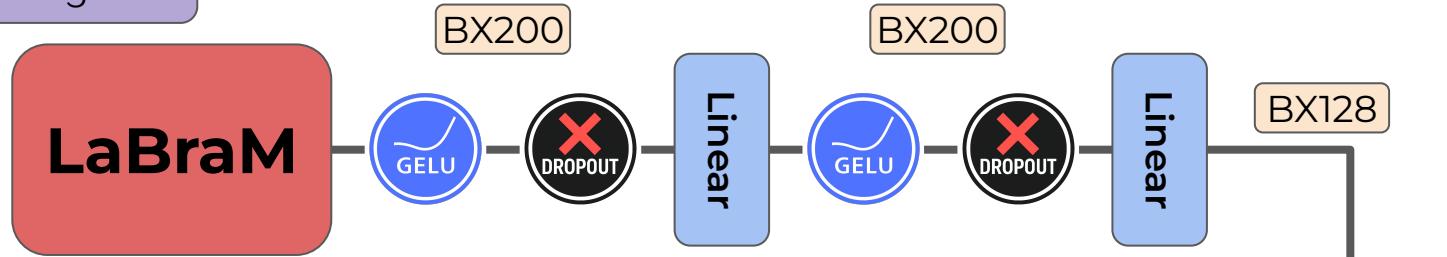
1 # eeg_embed - EEG model embedding [n, d]
2 # audio_embed - Audio model embedding [n, d]
3 # target_ids - ids of audio segments [n]
4 # b, t_prime - learnable bias and temperature
5 # n - mini-batch size
6 eeg_embed_z = 12_normalize(eeg_embed)
7 audio_embed_z = 12_normalize(audio_embed)
8 t = exp(t_prime)
9 # ~ is used as a short hand for adding a new axis to an array to allow array
   broadcasting
10 labels = 2 * (target_ids[:, ~] == target_ids[~, :]) - ones(n,n)
11 logits = dot(eeg_embed_z, audio_embed_z.T) * t + b
12 loss = -sum(log_sigmoid(labels * logits)) / n

```

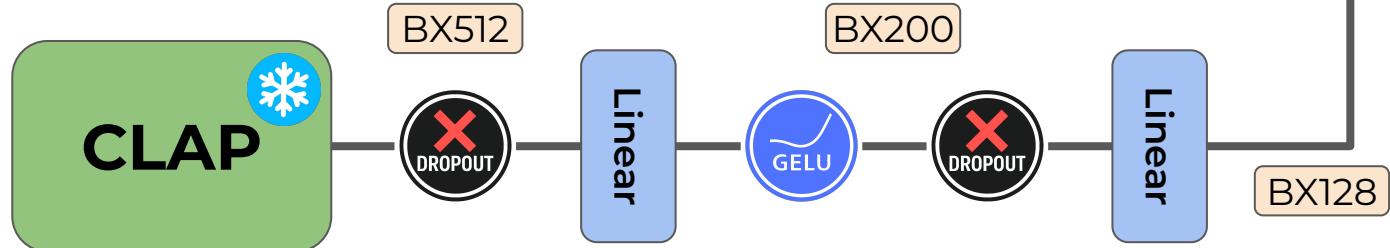


Methodology

Contrastive learning



Dropout: 0.08
LR: 5e-4
Scheduler: OneCycle
Batch size: 32



Results & Discussion

Results & Discussion

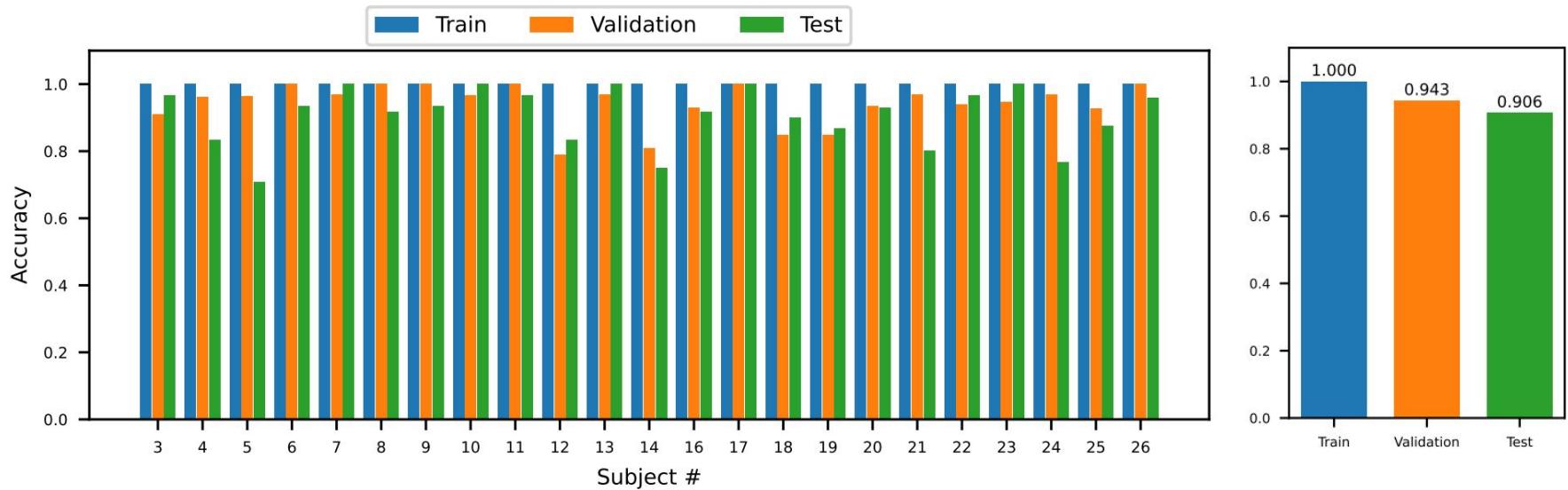
Baseline

- Each experiment used a 15 second decision window
- Only ran experiments with a single seed
- Backwards model

# Conditions	Validation accuracy	Test accuracy
Two conditions	0.643	0.604
Five conditions	0.564	0.568

Results & Discussion

Condition classification

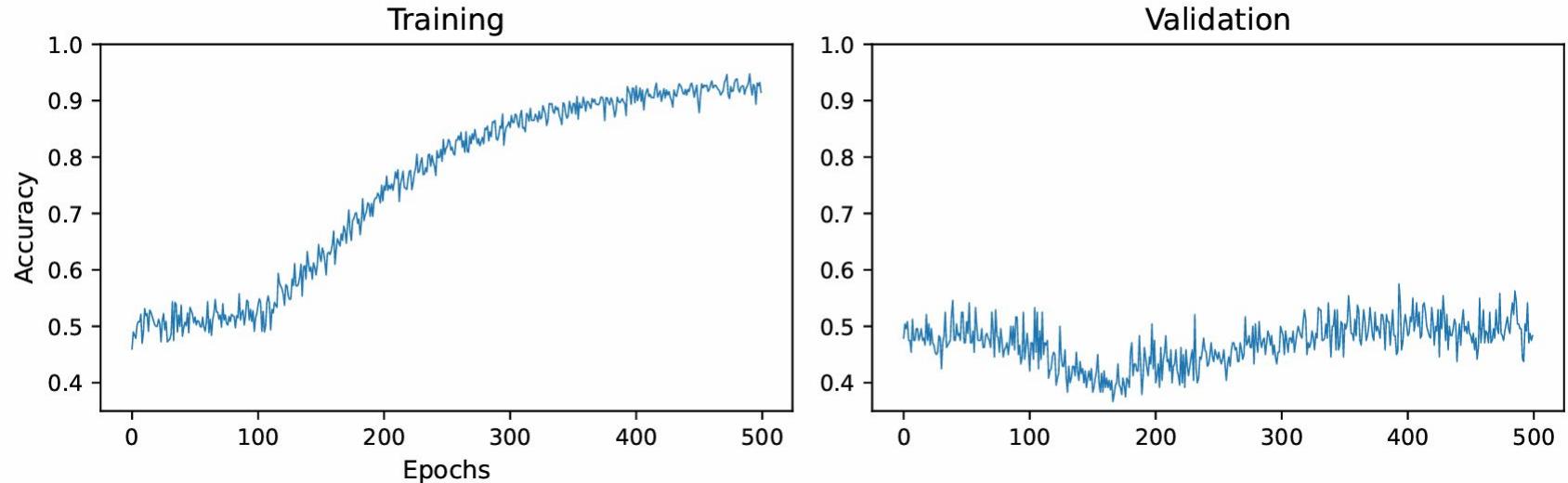


Results & Discussion

Contrastive learning

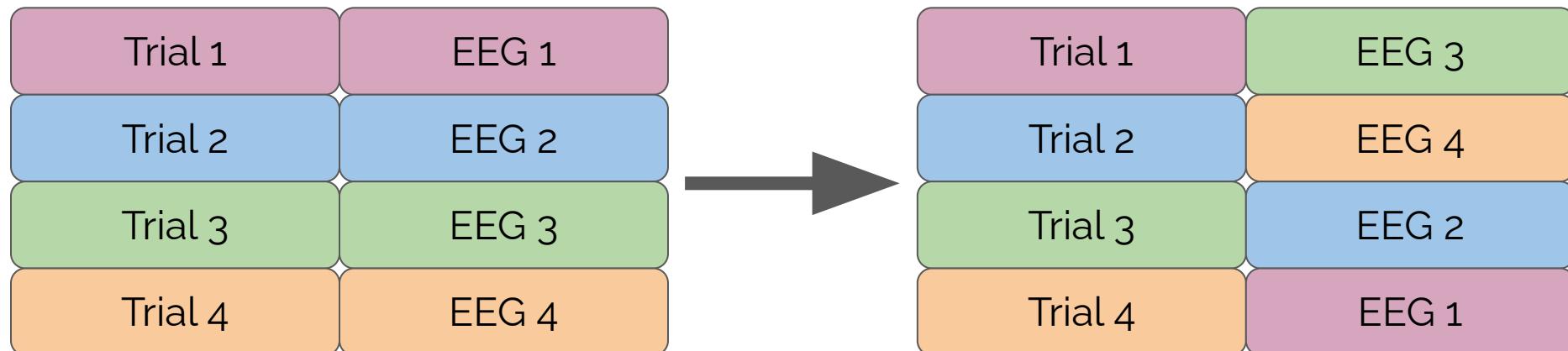
- Overfitting
- Memorization

Temporal Split



Results & Discussion

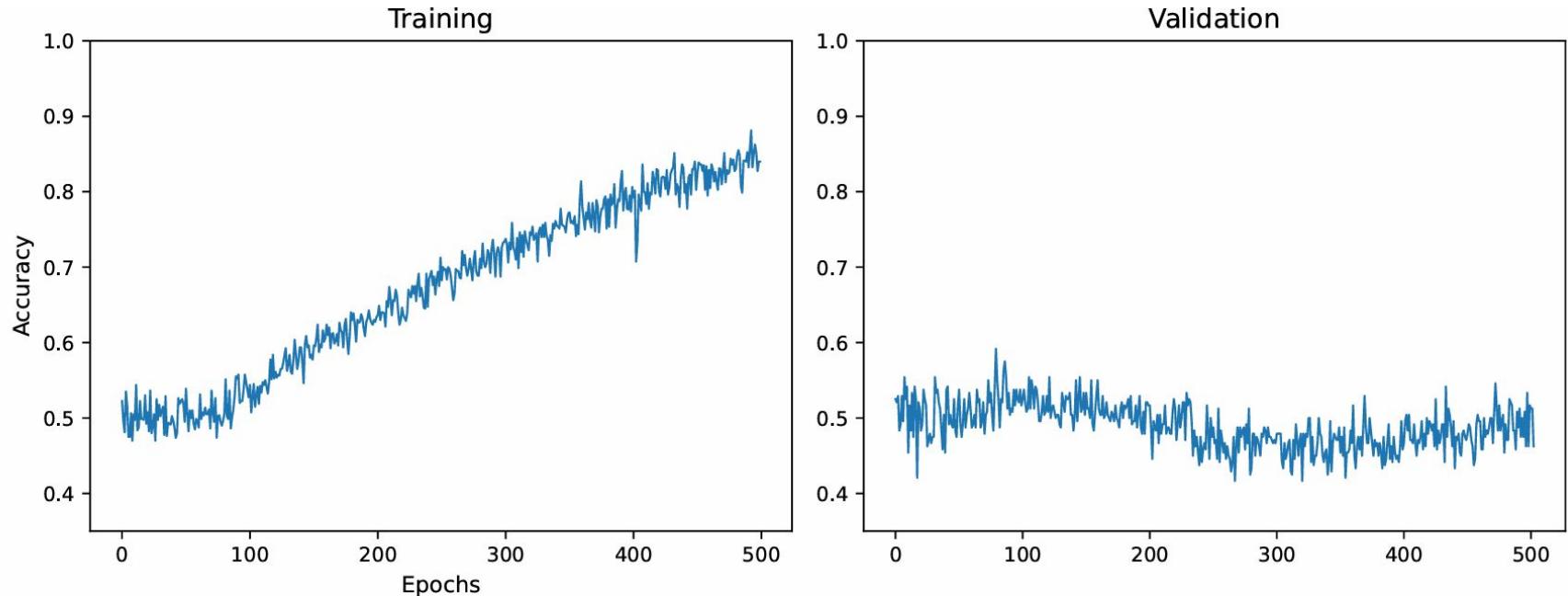
Contrastive learning



Results & Discussion

Contrastive learning

Temporal Split with mismatched EEG

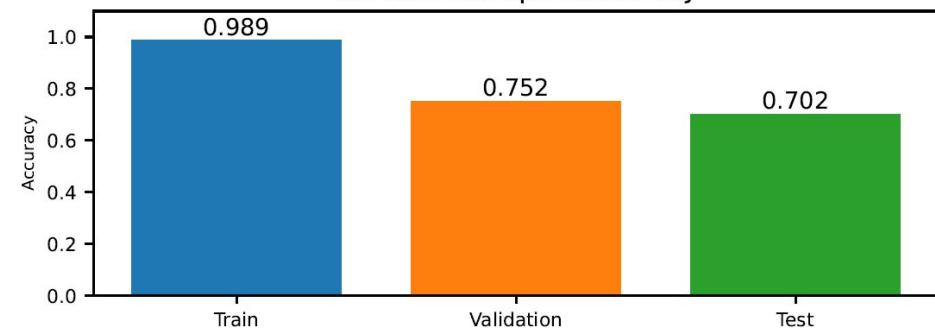


Results & Discussion

Contrastive learning

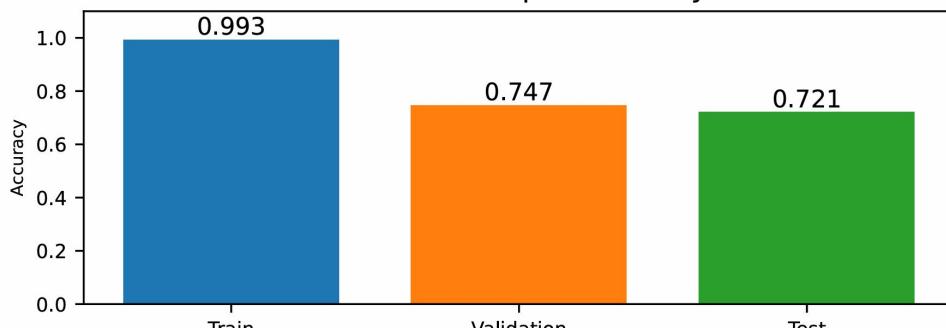
Noise-free conditions

Contrastive split accuracy



All conditions

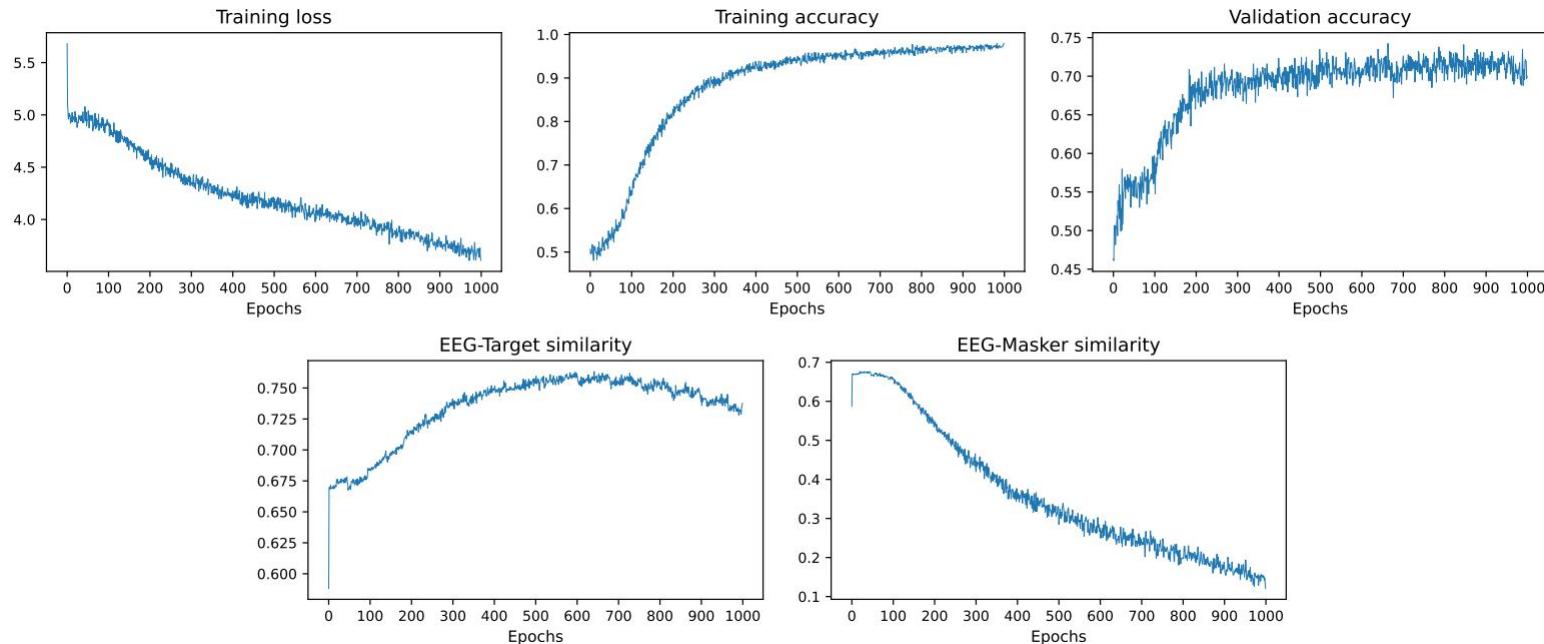
Contrastive split accuracy



Results & Discussion

Contrastive learning

All conditions

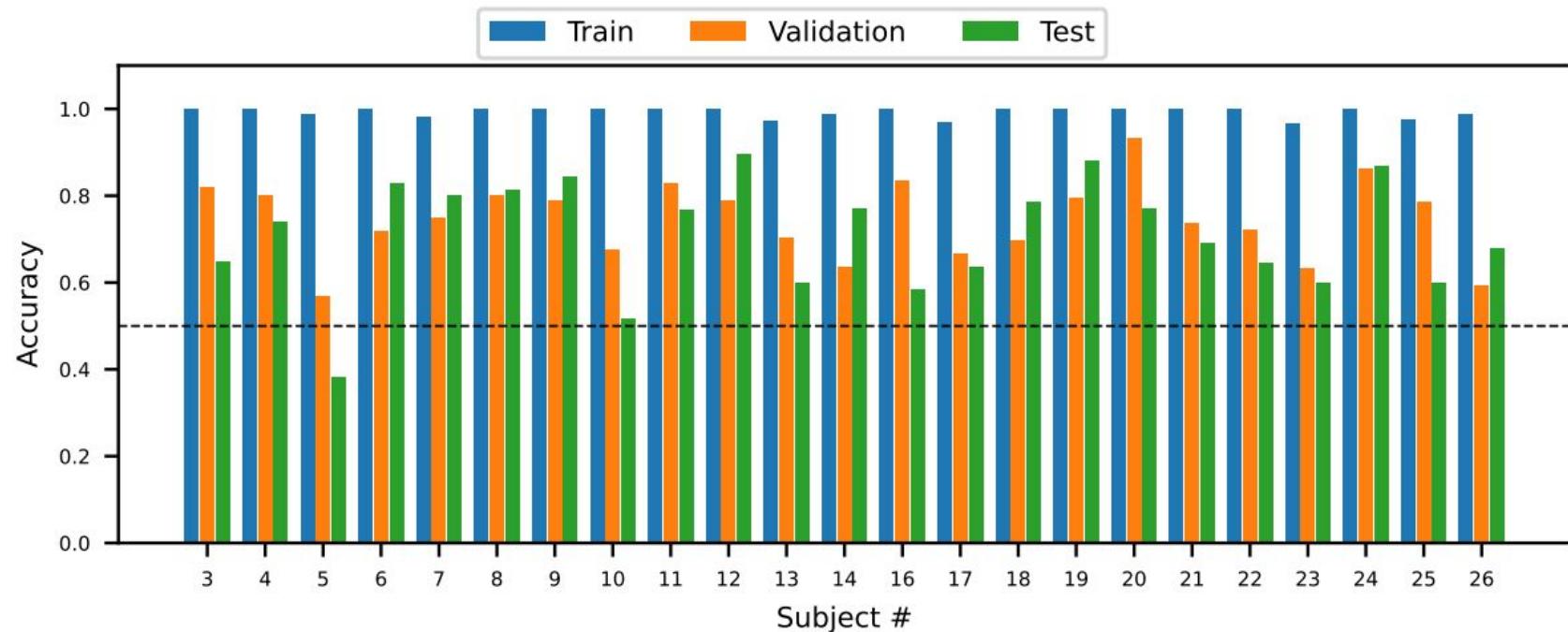


Results & Discussion

Contrastive learning

- Better than random guessing
- High response accuracy + no missing data-> high model accuracy (9, 12, 24)

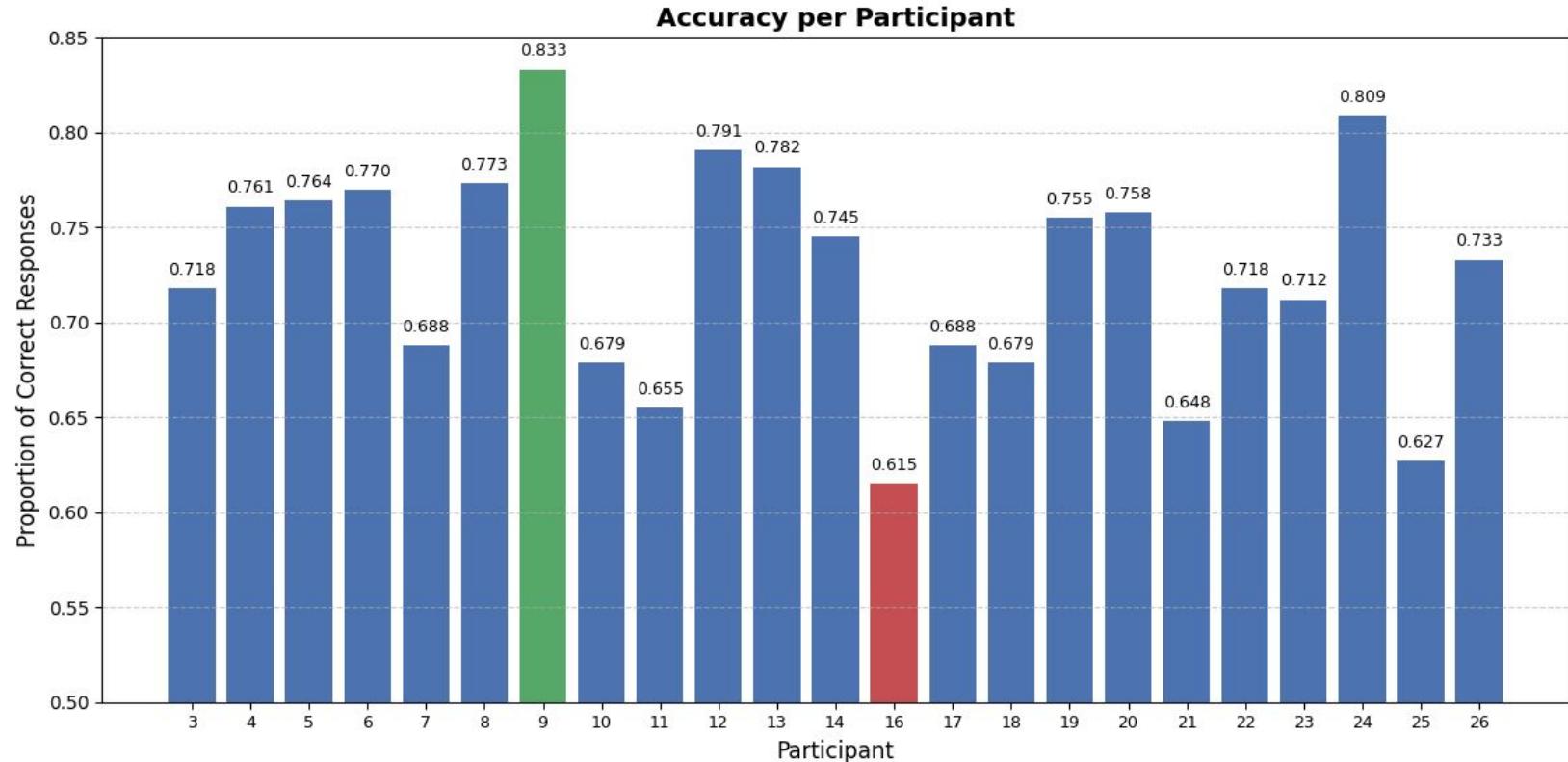
Subject accuracy on all conditions



Data

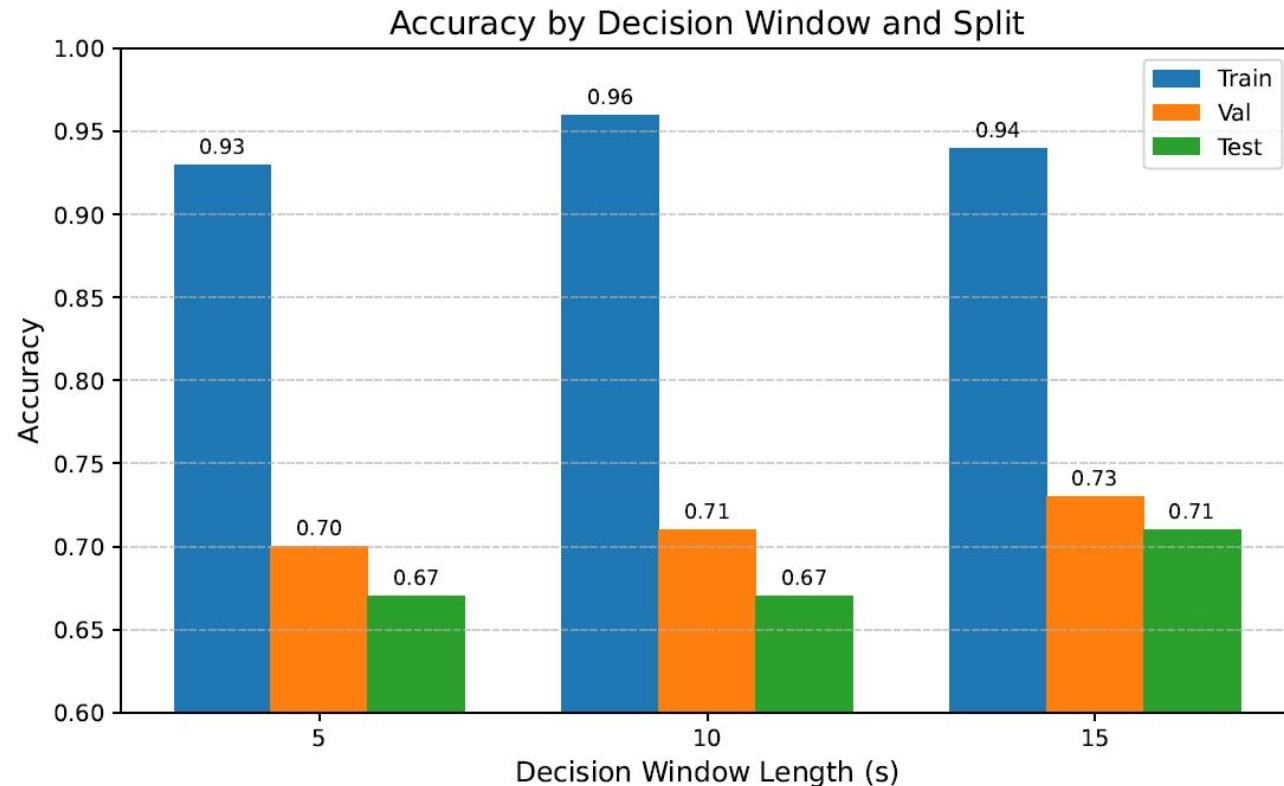
Response accuracy

2 yes/no questions per trial



Results & Discussion

Contrastive learning



Results & Discussion

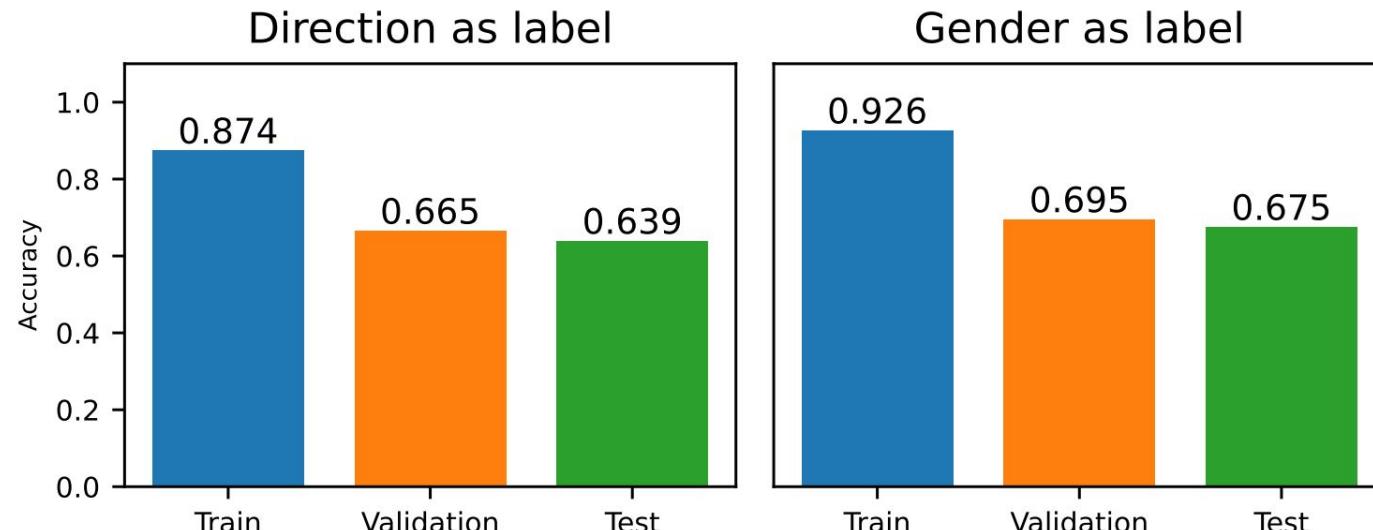
Augmentation results

- TR: Time Reversal
- DR: Channel Dropout
- FTS: Fourier Transform Surrogate

		Train	Val	Test
	No aug	0.989	0.752	0.702
	TR	0.987	0.748	0.725
	DR	0.946	0.711	0.667
	FTS	0.905	0.714	0.694

Results & Discussion

ASAD



Results & Discussion

Direct classification

	Train	Validation	Test
Linear probe	0.572	0.521	0.522
LaBraM finetuning	0.984	0.707	0.676
Full finetuning	0.722	0.523	0.492

Conclusion

Conclusion

RQ1

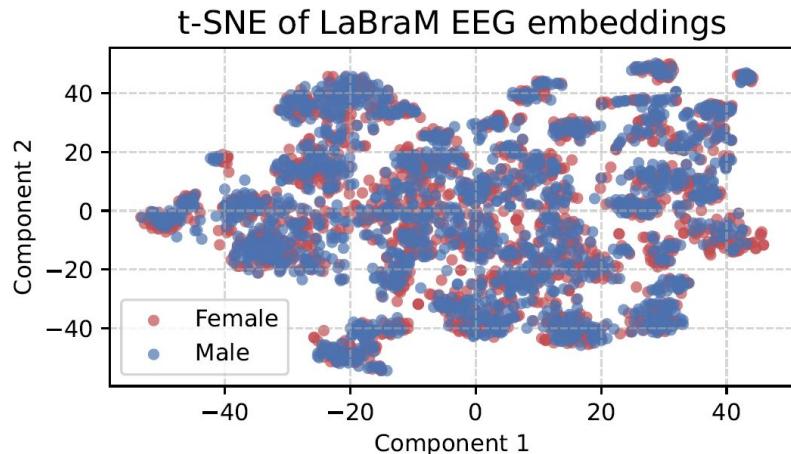
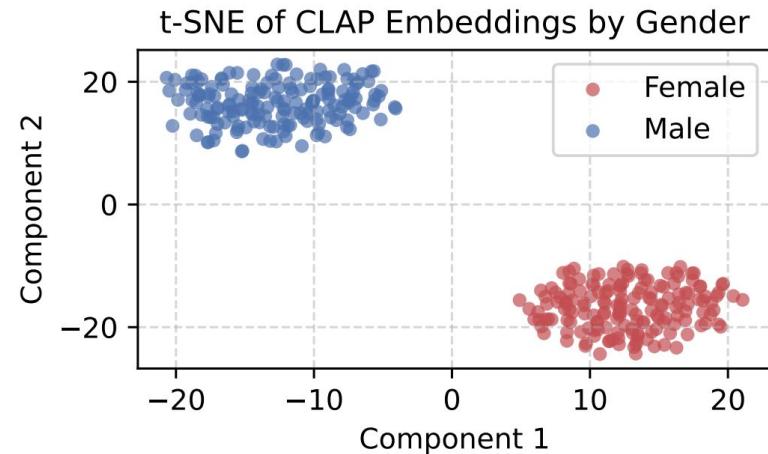
RQ1: How do CLAP and LaBraM perform as pretrained feature extractors for auditory attention decoding?

	Train	Validation	Test
Linear probe	0.572	0.521	0.522

Conclusion

RQ1

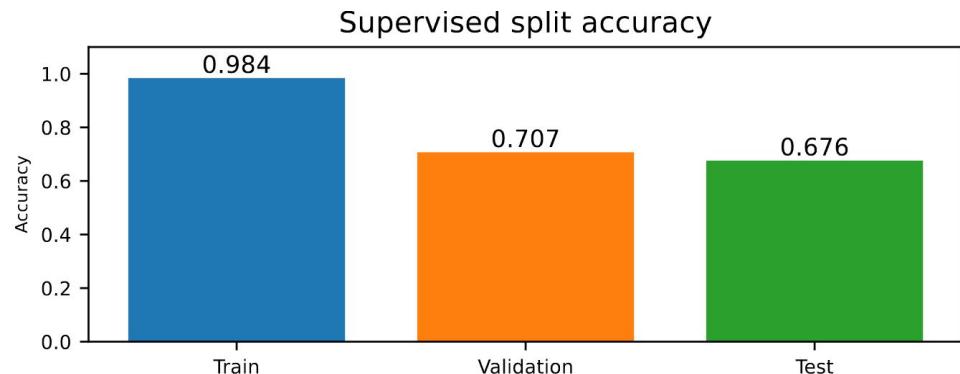
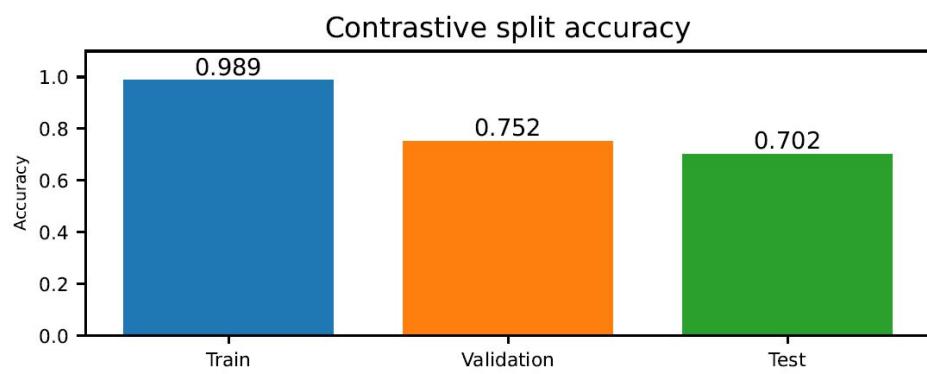
RQ1: How do CLAP and LaBraM perform as pretrained feature extractors for auditory attention decoding?



Conclusion

RQ2

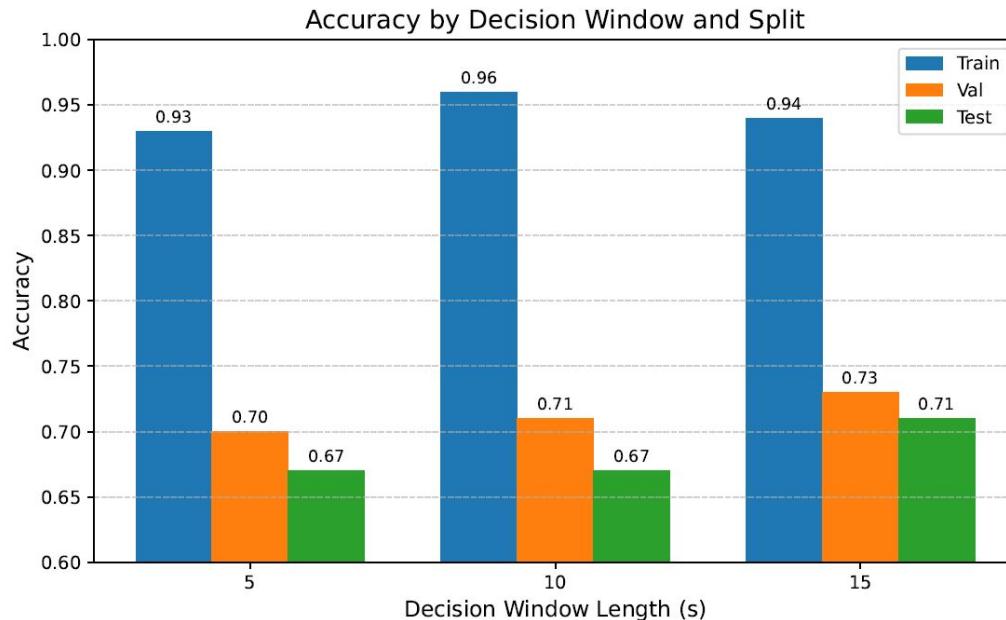
RQ2: How does contrastive learning compare to supervised classification for training robust AAD models using CLAP and LaBraM?



Conclusion

RQ3

RQ3: How does the length of decision windows affect performance?



Thank you for
your
Attention

Appendix

Results & Discussion

Baseline

- Each experiment used a 15 second decision window
- Only ran experiments with a single seed
- Backwards TRF model

Two condition performance

Split	Validation accuracy	Test accuracy
Temporal	0.588	0.633
Audio-disjoint	0.643	0.604

Five condition performance

Split	Validation accuracy	Test accuracy
Temporal	0.593	0.599
Audio-disjoint	0.564	0.568

Literature Review

Why Direct Classification?

[...] the process of stimulus reconstruction [...] is not optimized to effectively detect attention. [...] the compression of multichannel EEG signals into a single waveform through stimulus reconstruction reduces the available information for analysis¹

[The neural network] outperforms the baseline linear stimulus reconstruction method, improving decoding accuracy [...] from 59% to 87%²

[...] correlation between the reconstructed and the attended speech envelopes is generally weak³

[1]: Siqi Cai et al. "EEG-based Auditory Attention Detection in Cocktail Party Environment."

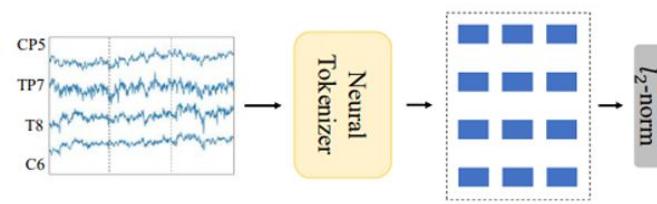
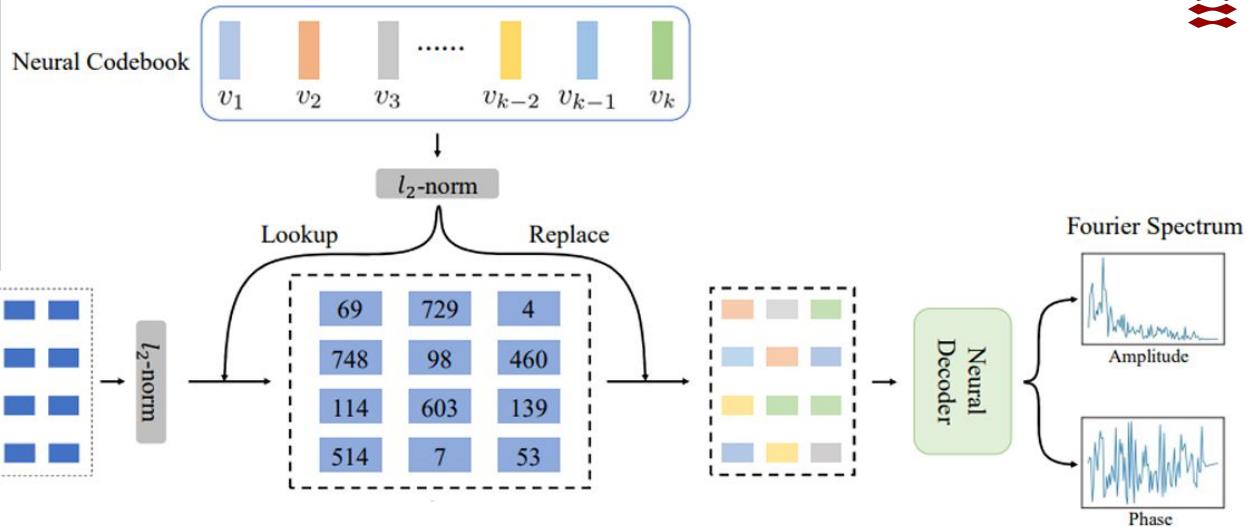
[2]: Gregory Ciccarelli et al. "Comparison of Two-Talker Attention Decoding from EEG with Nonlinear Neural Networks and Linear Methods."

[3]: Enze Su et al. "STAnet: A Spatiotemporal Attention Network for Decoding Auditory Spatial Attention From EEG."

Literature Review

LaBraM Pretraining

Neural Tokenizer Training



$$\mathcal{L}_T = \sum_{x \in \mathcal{D}} \sum_{i=1}^N \left\| o_i^A - A_i \right\|_2^2 + \left\| o_i^\phi - \phi_i \right\|_2^2 + \left\| \text{sg}(\ell_2(p_i)) - \ell_2(v_{z_i}) \right\|_2^2 + \left\| \ell_2(p_i) - \text{sg}(\ell_2(v_{z_i})) \right\|_2^2$$

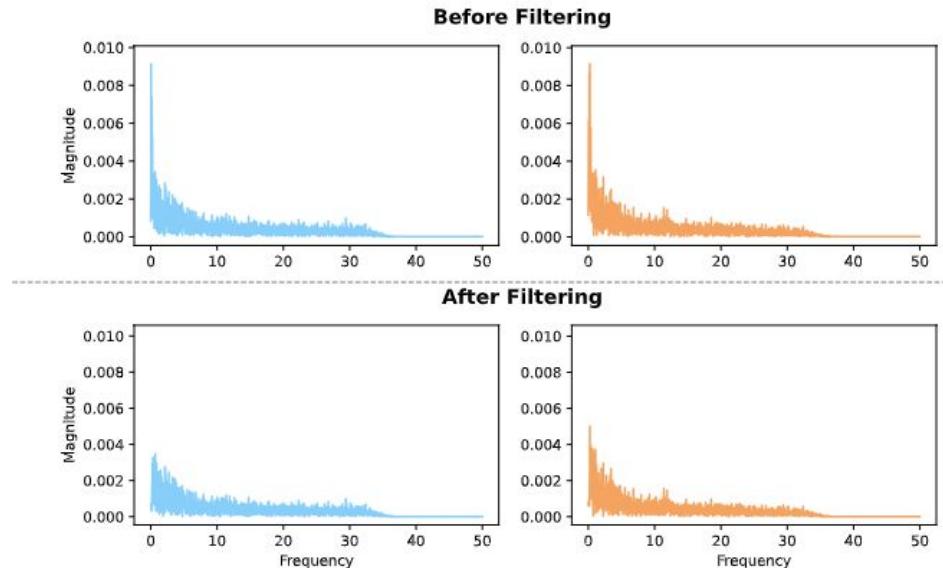
Annotations for the equation:

- Predicted amplitude: o_i^A
- Predicted phase: o_i^ϕ
- Tokenizer Vector: $\ell_2(p_i)$
- Codebook Vector: $\ell_2(v_{z_i})$
- Actual amplitude: A_i
- Actual phase: ϕ_i
- Codebook Vector: $\ell_2(v_{z_i})$

Data

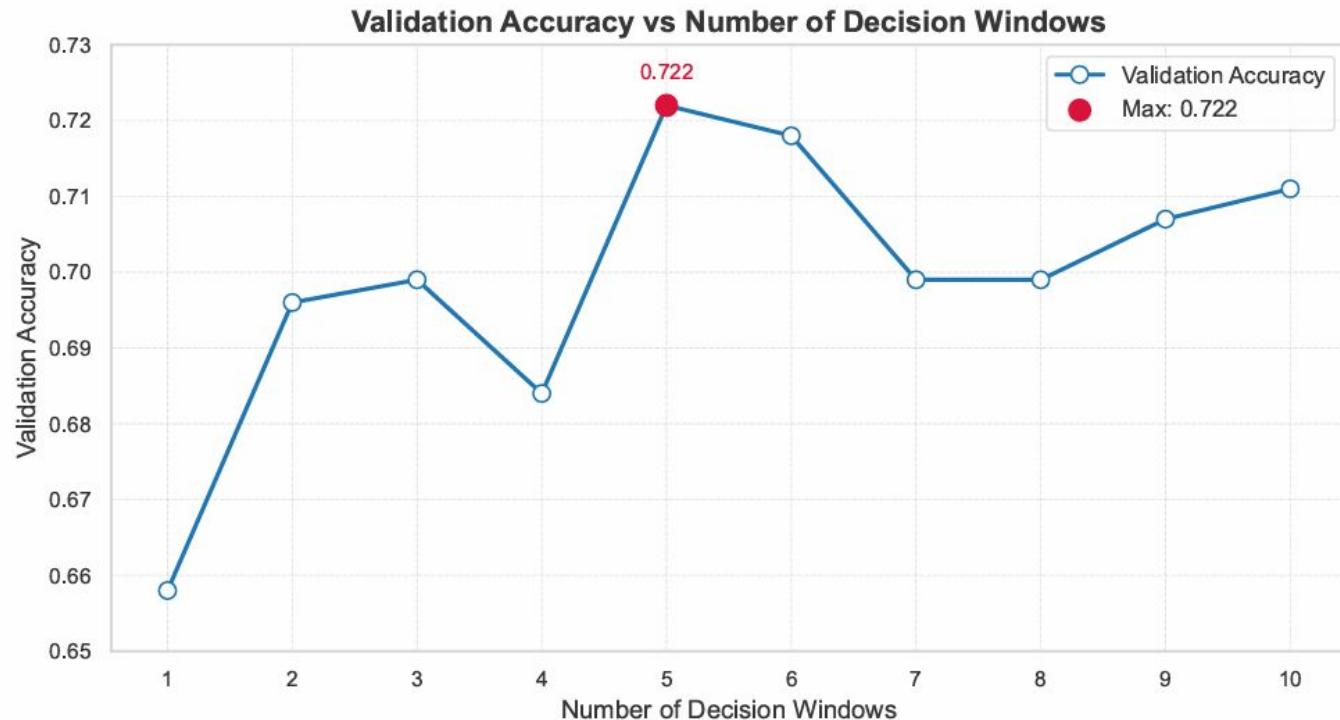
Preprocessing

- EEG was bandpass filtered between 0.5-30Hz
- ICA to remove EEG artifacts
- EEG downsampled from 8192Hz
→ 200Hz
- Audio upsamples from 44100Hz
→ 48000Hz



Results & Discussion

Contrastive learning



Results & Discussion

Comparisons

Lund Contrastive

- Hearing impaired subjects
- Unspecified background noise
- CNN + attention
- Subject specific architecture

Lund DCCA

- No added background noise
- Whisper + Deep
Canonical-correlation analysis

	Lund Contrastive¹	Lund DCCA²	Our Model
Accuracy	71.5%	67.9%	67.0%

(5 second decision window)

[1] Gautam Sridhar et al. "Improving auditory attention decoding in noisy environments for listeners with hearing impairment through contrastive learning"

[2] Alessandro Celoria et al. "An ASR-based Hybrid Approach for Auditory Attention Decoding"

Results & Discussion

Out-of-sample classification

