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Introduction }

Cocktall party effect
Hearing aid users
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Introduction

Auditory Attention Decoding J

AAD: Audio+EEG — Attention
Decision window: Time segment used to predict
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Introduction

Research questions J

/RQT: How do CLAP and LaBraM perform as pretrained feature
extractors for auditory attention decoding?

RQ2: How does contrastive learning compare to supervised

classification for training robust AAD models using CLAP and
LaBraM?

RQ3: How does the length of decision windows affect performance?
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Literature Review

Signal Reconstruction
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Backwards Approach
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Literature Review
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ASAD
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Auditory Spatial Attention Decoding

ey [ Eeq |
qg Encoder @j_’ 09 T Right

=]
—
=

i



Literature Review J

Why Direct Classification? J

a N

[.] the process of stimulus reconstruction [.] is not
optimized to effectively detect attention. [...] the
compression of multichannel EEG signals into a
single waveform through stimulus reconstruction

reduces the available information for analysis* )

.

[1]: Siqi Cai et al. "EEG-based Auditory Attention Detection in Cocktail
Party Environment'

[2]: Enze Su et al. “STAnet: A Spatiotemporal Attention Network for De-
coding Auditory Spatial Attention From EEG”

/[...] correlation between the
reconstructed and the
attended speech envelopes is

generally weak?®
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Literature Review }
Audio Foundation Models J
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Literature Review

Audio Waveforms

Contrastive Language Audio
Pretraining (CLAP)
Trained on multiple datasets
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Literature Review

Brain Foundation Models J
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e Large Brain Model (LaBraM)
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Data }

Overview J

26 subjects

Five conditions

Male audio clips: 200, Female audio clips: 165
Trial length: T minute
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Data

Missing data

e 3 subjects missing, left with 23 subjects

o 3364 trials

Subject | 1 | 2 | 4| 5| 8| 14| 15|16 | 23| 25
Insert | X | X |V |V X |V | X | x|V |V
Free X I K| £ | | F | L] | X || X
-1dB X I X|#F£|LIF|X] ]| % |X| &£
-4dB X| X | x| VIV IV I x|V |V |V
-7dB X | X | V|V IV IV I x|V | x|V

Subject | Condition | # Missing Trials
10 Insert 16
20 -7dB 11
26 Insert 16
26 -4dB 15
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Data

2 yes/no questions per trial

Accuracy per Participant
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Proportion of Correct Responses

0.90

Accuracy per Condition
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Data

Preprocessing

EEG was bandpass filtered between 0.5-30Hz

Independent Component Analysis (ICA) to
remove EEG artifacts

EEG downsampled from 8192Hz — 200Hz

Audio upsampled from 44100Hz — 48000Hz
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Component 2

—-20 1

t-SNE of CLAP Embeddings by Gender

Direction as label

Female
Male
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Model Verification
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Subject: 3

Train
60%

Validation
20%

Test
20%
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Methodology

Data Split - Audio Disjoint J

Trial 168

Trial 588

Trial 1065

Trial 47 Trial 216

Trial 321

Trial 1237

Trial 2215

Trial 2716

l

Trial 473 Trial 907

Trial 1364

Training split

l

Validation split
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Randomized trial segments
Fixed validation segments

Three augmentations:

O

O

O

Channel dropout
FT Surrogate
Time Reverse

~
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CLAP

LaBraM
# eeg_embed - EEG model embedding [n, d]
# audio_embed - Audio model embedding [n, d]
# target_ids - ids of audio segments [n]
# b, t_prime - learnable bias and temperature
# n - mini-batch size
eeg_embed_z = 12_normalize (eeg_embed)
audio_embed_z = 12_normalize(audio_embed)
t = exp(t_prime)
# ~ is used as a short hand for adding a new axis to an array to allow array
broadcasting
labels = 2 * (target_ids[:, ~] == target_ids([~, :]) - ones(n,n)
logits = dot(eeg_embed_z, audio_embed_z.T) * t + b
loss = -sum(log_sigmoid(labels * logits)) / n




Methodology

Contrastive learning
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Results & Discussion }

Baseline J

Each experiment used a 15
second decision window
Only ran experiments with a
single seed

Backwards model

# Conditions ‘ Validation accuracy ‘ Test accuracy

Two conditions
Five conditions

0.643
0.564

0.604
0.568
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Results & Discussion

Accuracy
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Results & Discussion }

Contrastive learning J

Overfitting }
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Results & Discussion }

Contrastive learning

J
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Results & Discussion

i
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All conditions
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Results & Discussion e Better than random guessing
e High response accuracy + no missing data->

high model accuracy (9, 12, 24)

Subject accuracy on all conditions
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Data

2 yes/no questions per trial

Accuracy per Participant
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Results & Discussion

Accuracy by Decision Window and Split
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Results & Discussion }

Augmentation results

e TR: Time Reversal

e DR Channel Dropout

e FTS:Fourier Transform

Surrogate

~

)

-

Train Val Test
No aug | 0.989 | 0.752 | 0.702
TR 0.987 | 0.748 | 0.725
DR 0.946 | 0.711 | 0.667
FTS 0.905 | 0.714 | 0.694
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Results & Discussion

Accuracy

Direction as label

Gender as label

=
o
1

o
(oe]
1

o
(o)}
1

©
IS
1

o
[N}
1

o
o
1

0.874

Train Validation Test

0.926

Train Validation Test

=]
—
=

i



Results & Discussion }

Direct classification J

Train | Validation | Test
Linear probe 0.b72 0.521 0.522
LaBraM finetuning | 0.984 0.707 0.676
Full finetuning 0.722 0.523 0.492
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Conclusion }

RQ1 J

extractors for auditory attention decoding?

[RQ]: How do CLAP and LaBraM perform as pretrained feoture}

| Train | Validation | Test

Linear probe | 0.572 |

0.921

| 0.522
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Conclusion

RQ1. How do CLAP and LaBraM perform as pretrained feature
extractors for auditory attention decoding?

t-SNE of LaBraM EEG embeddings

Component 2

-40 =20 0 20 40
Component 1

Component 2

t-SNE of CLAP Embeddings by Gender

e Female
e Male
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Accuracy

Conclusion
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RQ2: How does contrastive learning compare to supervised
classification for training robust AAD models using CLAP and

LaBraM?

Supervised split accuracy

Train

Validation

0.676

Test

Contrastive split accuracy

Accuracy

Train Validation Test



Conclusion

RQ3: How does the length of decision windows affect
performance?

Accuracy

o
g
vl

0.70 1

0.65 1

0.60 -

Accuracy by Decision Window and Split
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5 10
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Results & Discussion }

Baseline J

Each experiment used a 15
second decision window
Only ran experiments with a
single seed

Backwards TRF model

Two condition performance

Split ‘ Validation accuracy \ Test accuracy
Temporal 0.588 0.633
Audio-disjoint 0.643 0.604
Five condition performance
Split | Validation accuracy | Test accuracy
Temporal 0.593 0.599
Audio-disjoint 0.564 0.568
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Literature Review J

Why Direct Classification?
! J [The neural networR] outperforms the

baseline linear stimulus reconstruction

4 , , , R method, improving decoding accuracy
[.] the process of stimulus reconstruction [.] is not ] from 59% to 87%7

optimized to effectively detect attention. [...] the
compression of multichannel EEG signals into a
single waveform through stimulus reconstruction
reduces the available information for analysis* )

.

[..] correlation between the
reconstructed and the attended
speech envelopes is generally

3
[1]: Sigi Cai et al. "EEG-based Auditory Attention Detection in Cocktail wear

Party Environment”

[2]: Gregory Ciccarelli et al. “Comparison of Two-Talker Attention Decoding
from EEG with Nonlinear Neural Networks and Linear Methods”

[3]: Enze Su et al. "STAnet: A Spatiotemporal Attention Network for De-
coding Auditory Spatial Attention From EEG
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Data

Preprocessing J

Before Filtering
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ICA to remove EEG artifacts - 0.0021
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Validation Accuracy

0.66

0.65

Validation Accuracy vs Number of Decision Windows

3 4

0.722

5 6
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Results & Discussion }

Comparisons J
s A e
Lund Contrastive Lund DCCA

e Hearing impaired subjects e No added background noise

e Unspecified background noise e Whisper + Deep

e CNN + attention Canonical-correlation analysis
e Subject specific architecture L

Lund Contrastive’ | Lund DCCA? Our Model

Accuracy 71.5%

67.9% 67.0%

(5 second decision window)

[1] Gautam Sridhar et al. “Improving auditory attention decoding i noisy environments for listeners with hearing
impairment through contrastive learning”
[2] Alessandro Celoria et al. “An ASR-based Hybrid Approach for Auditory Attention Decoding”
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Leave-one-out condition AAD performance
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